Search results
Results from the WOW.Com Content Network
Intracellular transport is the movement of vesicles and substances within a cell. Intracellular transport is required for maintaining homeostasis within the cell by responding to physiological signals. [1] Proteins synthesized in the cytosol are distributed to their respective organelles, according to their specific amino acid’s sorting ...
In contrast, paracellular transport is the transfer of substances across an epithelium by passing through an intercellular space between the cells. It differs from transcellular transport, where the substances travel through the cell passing through both the apical membrane and basolateral membrane; Renal physiology. Transcellular transport is ...
A continuous, tightly spaced endothelial cell lining only permits the diffusion of small molecules. Larger molecules and blood cells require adequate space between cells or holes in the lining. The high resistivity of a cellular membrane prevents the diffusion of ions without a membrane transport protein.
The macroscopic energy equation for infinitesimal volume used in heat transfer analysis is [6] = +, ˙, where q is heat flux vector, −ρc p (∂T/∂t) is temporal change of internal energy (ρ is density, c p is specific heat capacity at constant pressure, T is temperature and t is time), and ˙ is the energy conversion to and from thermal ...
In cellular biology, membrane transport refers to the collection of mechanisms that regulate the passage of solutes such as ions and small molecules through biological membranes, which are lipid bilayers that contain proteins embedded in them. The regulation of passage through the membrane is due to selective membrane permeability – a ...
Staverman's reflection coefficient, σ, is a unitless constant that is specific to the permeability of a membrane to a given solute. [6] The Starling equation, written without σ, describes the flow of a solvent across a membrane that is impermeable to the solutes contained within the solution. [7]
But the bigger killer in heat is the strain on the heart, especially for people who have cardiovascular disease, Jay said. It again starts with blood rushing to the skin to help shed core heat. That causes blood pressure to drop. The heart responds by trying to pump more blood to keep you from passing out.
In secondary active transport, also known as cotransport or coupled transport, energy is used to transport molecules across a membrane; however, in contrast to primary active transport, there is no direct coupling of ATP. Instead, it relies upon the electrochemical potential difference created by pumping ions in/out of the cell. [18]