Search results
Results from the WOW.Com Content Network
The Z-DNA structure. Proteopedia Z-DNA. Z-DNA is one of the many possible double helical structures of DNA.It is a left-handed double helical structure in which the helix winds to the left in a zigzag pattern, instead of to the right, like the more common B-DNA form.
A-DNA is thought to be one of three biologically active double helical structures along with B-DNA and Z-DNA. It is a right-handed double helix fairly similar to the more common B-DNA form, but with a shorter, more compact helical structure whose base pairs are not perpendicular to the helix-axis as in B-DNA.
The structure a DNA molecule depends on its environment. In aqueous enviromnents, including the majority of DNA in a cell, B-DNA is the most common structure. The A-DNA structure is dominates in dehydrated samples and is similar to the double-stranded RNA and DNA/RNA hybrids. Z-DNA is a rarer structure found in DNA bound to certain proteins.
DNA structure and bases A-B-Z-DNA Side View. Tertiary structure refers to the locations of the atoms in three-dimensional space, taking into consideration geometrical and steric constraints. It is a higher order than the secondary structure, in which large-scale folding in a linear polymer occurs and the entire chain is folded into a specific 3 ...
The double-helix model of DNA structure was first published in the journal Nature by James Watson and Francis Crick in 1953, [6] (X,Y,Z coordinates in 1954 [7]) based on the work of Rosalind Franklin and her student Raymond Gosling, who took the crucial X-ray diffraction image of DNA labeled as "Photo 51", [8] [9] and Maurice Wilkins, Alexander Stokes, and Herbert Wilson, [10] and base-pairing ...
Dubbed S, B, P, and Z, these artificial bases are capable of bonding with each other in a predictable way (S–B and P–Z), maintain the double helix structure of DNA, and be transcribed to RNA. Their existence could be seen as an indication that there is nothing special about the four natural nucleobases that evolved on Earth.
Three DNA conformations are believed to be found in nature, A-DNA, B-DNA, and Z-DNA. The "B" form described by James D. Watson and Francis Crick is believed to predominate in cells. [2] James D. Watson and Francis Crick described this structure as a double helix with a radius of 10 Å and pitch of 34 Å, making one complete turn about its axis ...
Non-B DNA can be classified into several types, including A-DNA, Z-DNA, H-DNA, G-quadruplexes, and Triplexes (Triple-stranded DNA).. A-DNA is a right-handed double helix structure for RNA-DNA duplexes and RNA-RNA duplexes that is less common than the more well-known B-DNA structure.