Search results
Results from the WOW.Com Content Network
Torque forms part of the basic specification of an engine: the power output of an engine is expressed as its torque multiplied by the angular speed of the drive shaft. Internal-combustion engines produce useful torque only over a limited range of rotational speeds (typically from around 1,000–6,000 rpm for a small car).
Calculation of the steam turbine shaft radius for a turboset: Assumptions: Power carried by the shaft is 1000 MW; this is typical for a large nuclear power plant. Yield stress of the steel used to make the shaft (τ yield) is: 250 × 10 6 N/m 2. Electricity has a frequency of 50 Hz; this is the typical frequency in Europe. In North America, the ...
The torque is then related to the lever length, shaft diameter and measured force. The device is generally used over a range of engine speeds to obtain power and torque curves for the engine, since there is a non-linear relationship between torque and engine speed for most engine types. Power output in SI units may be calculated as follows:
Non-circular cross-sections always have warping deformations that require numerical methods to allow for the exact calculation of the torsion constant. [ 2 ] The torsional stiffness of beams with non-circular cross sections is significantly increased if the warping of the end sections is restrained by, for example, stiff end blocks.
The following stresses are induced in the shafts. Shear stresses due to the transmission of torque (due to torsional load). Bending stresses (tensile or compressive) due to the forces acting upon the machine elements like gears and pulleys as well as the self weight of the shaft. Stresses due to combined torsional and bending loads.
Combining these two features with the length of the shaft, , one is able to calculate a shaft's angular deflection, , due to the applied torque, : = As shown, the larger the material's shear modulus and polar second moment of area (i.e. larger cross-sectional area), the greater resistance to torsional deflection.
The angle domain equations above show that the motion of the piston (connected to rod and crank) is not simple harmonic motion, but is modified by the motion of the rod as it swings with the rotation of the crank.
The torque required to lift or lower a load can be calculated by "unwrapping" one revolution of a thread. This is most easily described for a square or buttress thread as the thread angle is 0 and has no bearing on the calculations.