enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Chord (geometry) - Wikipedia

    en.wikipedia.org/wiki/Chord_(geometry)

    Equal chords are subtended by equal angles from the center of the circle. A chord that passes through the center of a circle is called a diameter and is the longest chord of that specific circle. If the line extensions (secant lines) of chords AB and CD intersect at a point P, then their lengths satisfy AP·PB = CP·PD (power of a point theorem).

  3. Intersecting chords theorem - Wikipedia

    en.wikipedia.org/wiki/Intersecting_chords_theorem

    The value of the two products in the chord theorem depends only on the distance of the intersection point S from the circle's center and is called the absolute value of the power of S; more precisely, it can be stated that: | | | | = | | | | = where r is the radius of the circle, and d is the distance between the center of the circle and the ...

  4. Circle - Wikipedia

    en.wikipedia.org/wiki/Circle

    The diameter is the longest chord of the circle. Among all the circles with a chord AB in common, the circle with minimal radius is the one with diameter AB. If the intersection of any two chords divides one chord into lengths a and b and divides the other chord into lengths c and d, then ab = cd.

  5. Circular segment - Wikipedia

    en.wikipedia.org/wiki/Circular_segment

    A circular segment (in green) is enclosed between a secant/chord (the dashed line) and the arc whose endpoints equal the chord's (the arc shown above the green area). In geometry, a circular segment or disk segment (symbol: ⌓) is a region of a disk [1] which is "cut off" from the rest of the disk by a straight line.

  6. Circular arc - Wikipedia

    en.wikipedia.org/wiki/Circular_arc

    Using the intersecting chords theorem (also known as power of a point or secant tangent theorem) it is possible to calculate the radius r of a circle given the height H and the width W of an arc: Consider the chord with the same endpoints as the arc. Its perpendicular bisector is another chord, which is a diameter of the circle.

  7. Sagitta (geometry) - Wikipedia

    en.wikipedia.org/wiki/Sagitta_(geometry)

    In the following equations, denotes the sagitta (the depth or height of the arc), equals the radius of the circle, and the length of the chord spanning the base of the arc. As 1 2 l {\displaystyle {\tfrac {1}{2}}l} and r − s {\displaystyle r-s} are two sides of a right triangle with r {\displaystyle r} as the hypotenuse , the Pythagorean ...

  8. Scale of chords - Wikipedia

    en.wikipedia.org/wiki/Scale_of_Chords

    A chord is a line drawn between two points on the circumference of a circle. Look at the centre point of this line. For a circle of radius r, each half will be ⁡ so the chord will be ⁡. The line of chords scale represents each of these values linearly on a scale running from 0 to 60.

  9. Degree of curvature - Wikipedia

    en.wikipedia.org/wiki/Degree_of_curvature

    The radius of such a curve is 5729.57795. If the chord definition is used, each 100-unit chord length will sweep 1 degree with a radius of 5729.651 units, and the chord of the whole curve will be slightly shorter than 600 units.