Search results
Results from the WOW.Com Content Network
The circle diagram (also known as Heyland diagram or Heyland circle) is the graphical representation of the performance of the electrical machine [1] [2] [3] drawn in terms of the locus of the machine's input voltage and current. [4] It was first conceived by Alexander Heyland in 1894 and Bernhard Arthur Behrend in 1895.
These loops are used both for carrying sensor information from field instrumentation and carrying control signals to the process modulating devices, such as a valve. The key advantages of the current loop are: The loop can often power the remote device, with power supplied by the controller, thus removing need for power cabling.
The magnetic field (marked B, indicated by red field lines) around wire carrying an electric current (marked I) Compass and wire apparatus showing Ørsted's experiment (video [1]) In electromagnetism , Ørsted's law , also spelled Oersted's law , is the physical law stating that an electric current induces a magnetic field .
The term loop in this context is not the same as the usual meaning of loop in graph theory. The set of branches forming a given loop is called a tie set. [note 2] The set of network equations are formed by equating the loop currents to the algebraic sum of the tie set branch currents. [30]
In classical electromagnetism, Ampère's circuital law (not to be confused with Ampère's force law) [1] relates the circulation of a magnetic field around a closed loop to the electric current passing through the loop. James Clerk Maxwell derived it using hydrodynamics in his 1861 published paper "On Physical Lines of Force". [2]
Two current-carrying wires attract each other magnetically: The bottom wire has current I 1, which creates magnetic field B 1. The top wire carries a current I 2 through the magnetic field B 1, so (by the Lorentz force) the wire experiences a force F 12. (Not shown is the simultaneous process where the top wire makes a magnetic field which ...
The magnetic field lines (green) of a current-carrying loop of wire pass through the center of the loop, concentrating the field there. An electromagnetic coil is an electrical conductor such as a wire in the shape of a coil (spiral or helix).
This field causes an electric current to flow in the wire loop by electromagnetic induction. Magnetic fields can also be used to make electric currents. When a changing magnetic field is applied to a conductor, an electromotive force (EMF) is induced, [ 21 ] : 1004 which starts an electric current, when there is a suitable path.