enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Generalized method of moments - Wikipedia

    en.wikipedia.org/wiki/Generalized_method_of_moments

    The GMM estimators are known to be consistent, asymptotically normal, and most efficient in the class of all estimators that do not use any extra information aside from that contained in the moment conditions. GMM were advocated by Lars Peter Hansen in 1982 as a generalization of the method of moments, [2] introduced by Karl Pearson in 1894 ...

  3. EM algorithm and GMM model - Wikipedia

    en.wikipedia.org/wiki/EM_Algorithm_And_GMM_Model

    The EM algorithm consists of two steps: the E-step and the M-step. Firstly, the model parameters and the () can be randomly initialized. In the E-step, the algorithm tries to guess the value of () based on the parameters, while in the M-step, the algorithm updates the value of the model parameters based on the guess of () of the E-step.

  4. Instrumental variables estimation - Wikipedia

    en.wikipedia.org/wiki/Instrumental_variables...

    In this case, the generalized method of moments (GMM) can be used. The GMM IV estimator is ... The over-identified IV is therefore a generalization of the just ...

  5. Generalized normal distribution - Wikipedia

    en.wikipedia.org/wiki/Generalized_normal...

    Generalizations [ edit ] The multivariate generalized normal distribution, i.e. the product of n {\displaystyle n} exponential power distributions with the same β {\displaystyle \beta } and α {\displaystyle \alpha } parameters, is the only probability density that can be written in the form p ( x ) = g ( ‖ x ‖ β ) {\displaystyle p ...

  6. GMM - Wikipedia

    en.wikipedia.org/wiki/GMM

    GMM may refer to: Generalized method of moments, an econometric method; GMM Grammy, a Thai entertainment company; Gaussian mixture model, a statistical probabilistic ...

  7. Expectation–maximization algorithm - Wikipedia

    en.wikipedia.org/wiki/Expectation–maximization...

    In statistics, an expectation–maximization (EM) algorithm is an iterative method to find (local) maximum likelihood or maximum a posteriori (MAP) estimates of parameters in statistical models, where the model depends on unobserved latent variables. [1]

  8. AOL

    search.aol.com

    The search engine that helps you find exactly what you're looking for. Find the most relevant information, video, images, and answers from all across the Web.

  9. Generalization - Wikipedia

    en.wikipedia.org/wiki/Generalization

    The connection of generalization to specialization (or particularization) is reflected in the contrasting words hypernym and hyponym.A hypernym as a generic stands for a class or group of equally ranked items, such as the term tree which stands for equally ranked items such as peach and oak, and the term ship which stands for equally ranked items such as cruiser and steamer.