Search results
Results from the WOW.Com Content Network
In mathematics, a linear equation is an equation that may be put in the form + … + + =, where , …, are the variables (or unknowns), and ,, …, are the coefficients, which are often real numbers. The coefficients may be considered as parameters of the equation and may be arbitrary expressions , provided they do not contain any of the variables.
This corresponds to a set of y values whose product is a square number, i.e. one whose factorization has only even exponents. The products of x and y values together form a congruence of squares. This is a classic system of linear equations problem, and can be efficiently solved using Gaussian elimination as soon as the number of rows exceeds ...
The solution set for the equations x − y = −1 and 3x + y = 9 is the single point (2, 3). A solution of a linear system is an assignment of values to the variables ,, …, such that each of the equations is satisfied. The set of all possible solutions is called the solution set. [5]
Animation depicting the process of completing the square. (Details, animated GIF version)In elementary algebra, completing the square is a technique for converting a quadratic polynomial of the form + + to the form + for some values of and . [1]
5⋅5, or 5 2 (5 squared), can be shown graphically using a square. Each block represents one unit, 1⋅1, and the entire square represents 5⋅5, or the area of the square. In mathematics, a square is the result of multiplying a number by itself. The verb "to square" is used to denote this operation.
In linear algebra, a linear relation, or simply relation, between elements of a vector space or a module is a linear equation that has these elements as a solution.. More precisely, if , …, are elements of a (left) module M over a ring R (the case of a vector space over a field is a special case), a relation between , …, is a sequence (, …,) of elements of R such that
Discrete calculus or the calculus of discrete functions, is the mathematical study of incremental change, in the same way that geometry is the study of shape and algebra is the study of generalizations of arithmetic operations.
Rational Bézier curve – polynomial curve defined in homogeneous coordinates (blue) and its projection on plane – rational curve (red) In mathematics, homogeneous coordinates or projective coordinates, introduced by August Ferdinand Möbius in his 1827 work Der barycentrische Calcul, [1] [2] [3] are a system of coordinates used in projective geometry, just as Cartesian coordinates are used ...