enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Power series - Wikipedia

    en.wikipedia.org/wiki/Power_series

    The familiar decimal notation for real numbers can also be viewed as an example of a power series, with integer coefficients, but with the argument x fixed at 1 ⁄ 10. In number theory, the concept of p-adic numbers is also closely related to that of a power series.

  3. Power series solution of differential equations - Wikipedia

    en.wikipedia.org/wiki/Power_series_solution_of...

    In order for the solution method to work, as in linear equations, it is necessary to express every term in the nonlinear equation as a power series so that all of the terms may be combined into one power series. As an example, consider the initial value problem ″ + ′ + ′ =; = , ′ = which describes a solution to capillary-driven flow in ...

  4. Generating function - Wikipedia

    en.wikipedia.org/wiki/Generating_function

    The left-hand side is the Maclaurin series expansion of the right-hand side. Alternatively, the equality can be justified by multiplying the power series on the left by 1 − x, and checking that the result is the constant power series 1 (in other words, that all coefficients except the one of x 0 are equal to 0). Moreover, there can be no ...

  5. Exponential function - Wikipedia

    en.wikipedia.org/wiki/Exponential_function

    The exponential function (in blue), and the sum of the first n + 1 terms of its power series (in red) where ! is the factorial of n (the product of the n first positive integers). This series is absolutely convergent for every per the ratio test. So, the derivative of the sum can be computed by term-by-term derivation, and this shows that the ...

  6. Incomplete gamma function - Wikipedia

    en.wikipedia.org/wiki/Incomplete_gamma_function

    Repeated application of the recurrence relation for the lower incomplete gamma function leads to the power series expansion: [2] (,) = = (+) (+) = = (+ +). Given the rapid growth in absolute value of Γ(z + k) when k → ∞, and the fact that the reciprocal of Γ(z) is an entire function, the coefficients in the rightmost sum are well-defined, and locally the sum converges uniformly for all ...

  7. List of mathematical series - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_series

    An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.

  8. Series expansion - Wikipedia

    en.wikipedia.org/wiki/Series_expansion

    A Laurent series is a generalization of the Taylor series, allowing terms with negative exponents; it takes the form = and converges in an annulus. [6] In particular, a Laurent series can be used to examine the behavior of a complex function near a singularity by considering the series expansion on an annulus centered at the singularity.

  9. Lagrange inversion theorem - Wikipedia

    en.wikipedia.org/wiki/Lagrange_inversion_theorem

    Faà di Bruno's formula gives coefficients of the composition of two formal power series in terms of the coefficients of those two series. Equivalently, it is a formula for the nth derivative of a composite function. Lagrange reversion theorem for another theorem sometimes called the inversion theorem; Formal power series#The Lagrange inversion ...