Search results
Results from the WOW.Com Content Network
The p-th central moment of a measure μ on the measurable space (M, B(M)) about a given point x 0 ∈ M is defined to be (,) (). μ is said to have finite p-th central moment if the p-th central moment of μ about x 0 is finite for some x 0 ∈ M.
In mathematics, the trigonometric moment problem is formulated as follows: given a sequence {}, does there exist a distribution function on the interval [,] such that: [1] [2] = (), with = ¯ for . In case the sequence is finite, i.e., { c k } k = 0 n < ∞ {\displaystyle \{c_{k}\}_{k=0}^{n<\infty }} , it is referred to as the truncated ...
A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x 3 − 3x + d = 0, where is the value of the cosine function at the one-third angle and d is the known value of the cosine function at the full angle.
The six trigonometric functions are defined for every real number, except, for some of them, for angles that differ from 0 by a multiple of the right angle (90°). Referring to the diagram at the right, the six trigonometric functions of θ are, for angles smaller than the right angle:
Basis of trigonometry: if two right triangles have equal acute angles, they are similar, so their corresponding side lengths are proportional.. In mathematics, the trigonometric functions (also called circular functions, angle functions or goniometric functions) [1] are real functions which relate an angle of a right-angled triangle to ratios of two side lengths.
Example: Given the mean and variance (as well as all further cumulants equal 0) the normal distribution is the distribution solving the moment problem. In mathematics , a moment problem arises as the result of trying to invert the mapping that takes a measure μ {\displaystyle \mu } to the sequence of moments
The quantity 206 265 ″ is approximately equal to the number of arcseconds in a circle (1 296 000 ″), divided by 2π, or, the number of arcseconds in 1 radian. The exact formula is = (″) and the above approximation follows when tan X is replaced by X.
Under the above conditions, there exists a solution to the problem for any given set of data points {x k, y k} as long as N, the number of data points, is not larger than the number of coefficients in the polynomial, i.e., N ≤ 2K+1 (a solution may or may not exist if N>2K+1 depending upon the particular set of data points).