enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of thermal conductivities - Wikipedia

    en.wikipedia.org/wiki/List_of_thermal_conductivities

    In heat transfer, the thermal conductivity of a substance, k, is an intensive property that indicates its ability to conduct heat. For most materials, the amount of heat conducted varies (usually non-linearly) with temperature. [1] Thermal conductivity is often measured with laser flash analysis. Alternative measurements are also established.

  3. Basalt fiber - Wikipedia

    en.wikipedia.org/wiki/Basalt_fiber

    The basalt fibers typically have a filament diameter of between 10 and 20 μm which is far enough above the respiratory limit of 5 μm to make basalt fiber a suitable replacement for asbestos. [5] They also have a high elastic modulus , resulting in high specific strength —three times that of steel .

  4. Thermal conductivity and resistivity - Wikipedia

    en.wikipedia.org/wiki/Thermal_conductivity_and...

    The thermal conductivity of a material is a measure of its ability to conduct heat.It is commonly denoted by , , or and is measured in W·m −1 ·K −1.. Heat transfer occurs at a lower rate in materials of low thermal conductivity than in materials of high thermal conductivity.

  5. Thermal conductivities of the elements (data page) - Wikipedia

    en.wikipedia.org/wiki/Thermal_conductivities_of...

    As quoted from various sources in an online version of: David R. Lide (ed), CRC Handbook of Chemistry and Physics, 84th Edition.CRC Press. Boca Raton, Florida, 2003; Section 12, Properties of Solids; Thermal and Physical Properties of Pure Metals / Thermal Conductivity of Crystalline Dielectrics / Thermal Conductivity of Metals and Semiconductors as a Function of Temperature

  6. Table of specific heat capacities - Wikipedia

    en.wikipedia.org/wiki/Table_of_specific_heat...

    In the last column, major departures of solids at standard temperatures from the Dulong–Petit law value of 3 R, are usually due to low atomic weight plus high bond strength (as in diamond) causing some vibration modes to have too much energy to be available to store thermal energy at the measured temperature.

  7. Mineral wool - Wikipedia

    en.wikipedia.org/wiki/Mineral_wool

    The droplets are drawn into fibers; the mass of both fibers and remaining droplets cool very rapidly so that no crystalline phases may form. When amorphous high-temperature mineral wool is installed and used in high-temperature applications such as industrial furnaces, at least one face may be exposed to conditions causing the fibers to ...

  8. Thermal conductance and resistance - Wikipedia

    en.wikipedia.org/wiki/Thermal_conductance_and...

    A 2008 review paper written by Philips researcher Clemens J. M. Lasance notes that: "Although there is an analogy between heat flow by conduction (Fourier's law) and the flow of an electric current (Ohm’s law), the corresponding physical properties of thermal conductivity and electrical conductivity conspire to make the behavior of heat flow ...

  9. Heisler chart - Wikipedia

    en.wikipedia.org/wiki/Heisler_Chart

    These first Heisler–Gröber charts were based upon the first term of the exact Fourier series solution for an infinite plane wall: (,) = = [⁡ + ⁡ ⁡], [1]where T i is the initial uniform temperature of the slab, T ∞ is the constant environmental temperature imposed at the boundary, x is the location in the plane wall, λ is the root of λ * tan λ = Bi, and α is thermal diffusivity.