Search results
Results from the WOW.Com Content Network
An oscillator is a physical system characterized by periodic motion, such as a pendulum, tuning fork, or vibrating diatomic molecule.Mathematically speaking, the essential feature of an oscillator is that for some coordinate x of the system, a force whose magnitude depends on x will push x away from extreme values and back toward some central value x 0, causing x to oscillate between extremes.
In work with Delbourgo and White, she explained the anharmonic Grassmann oscillator, which is the fermionic simple of the common anharmonic oscillator. She went ahead to create Dirac-like equations of movement, which incorporated the Grassmann variables in a general sense, and acquired quantized mass spectra, showing the helpfulness of such ...
The Morse potential, named after physicist Philip M. Morse, is a convenient interatomic interaction model for the potential energy of a diatomic molecule.It is a better approximation for the vibrational structure of the molecule than the quantum harmonic oscillator because it explicitly includes the effects of bond breaking, such as the existence of unbound states.
Created Date: 8/30/2012 4:52:52 PM
The quantum harmonic oscillator is the quantum-mechanical analog of the classical harmonic oscillator. Because an arbitrary smooth potential can usually be approximated as a harmonic potential at the vicinity of a stable equilibrium point , it is one of the most important model systems in quantum mechanics.
The damping force ensures that the oscillator's response is finite at its resonance frequency. For a time-harmonic driving force which originates from the electric field, Newton's second law can be applied to the electron to obtain the motion of the electron and expressions for the dipole moment, polarization, susceptibility, and dielectric ...
A molecular vibration is a periodic motion of the atoms of a molecule relative to each other, such that the center of mass of the molecule remains unchanged. The typical vibrational frequencies range from less than 10 13 Hz to approximately 10 14 Hz, corresponding to wavenumbers of approximately 300 to 3000 cm −1 and wavelengths of approximately 30 to 3 μm.
The so-called double-well potential is one of a number of quartic potentials of considerable interest in quantum mechanics, in quantum field theory and elsewhere for the exploration of various physical phenomena or mathematical properties since it permits in many cases explicit calculation without over-simplification.