Search results
Results from the WOW.Com Content Network
In Einstein's theory of general relativity, the Schwarzschild metric (also known as the Schwarzschild solution) is an exact solution to the Einstein field equations that describes the gravitational field outside a spherical mass, on the assumption that the electric charge of the mass, angular momentum of the mass, and universal cosmological constant are all zero.
This is just an artifact of how Schwarzschild coordinates are defined; a free-falling particle will only take a finite proper time (time as measured by its own clock) to pass between an outside observer and an event horizon, and if the particle's world line is drawn in the Kruskal–Szekeres diagram this will also only take a finite coordinate ...
This diagram gives the route to find the Schwarzschild solution by using the weak field approximation. The equality on the second row gives g 44 = −c 2 + 2GM/r, assuming the desired solution degenerates to Minkowski metric when the motion happens far away from the blackhole (r approaches to positive infinity).
For example, the Schwarzschild radius r s of the Earth is roughly 9 mm (3 ⁄ 8 inch); at the surface of the Earth, the corrections to Newtonian gravity are only one part in a billion. The Schwarzschild radius of the Sun is much larger, roughly 2953 meters, but at its surface, the ratio r s /r is roughly 4 parts in a
In general relativity, the metric tensor (in this context often abbreviated to simply the metric) is the fundamental object of study. The metric captures all the geometric and causal structure of spacetime , being used to define notions such as time, distance, volume, curvature, angle, and separation of the future and the past.
Gullstrand–Painlevé coordinates are a particular set of coordinates for the Schwarzschild metric – a solution to the Einstein field equations which describes a black hole. The ingoing coordinates are such that the time coordinate follows the proper time of a free-falling observer who starts from far away at zero velocity, and the spatial ...
Its chief disadvantage is that in those coordinates the metric depends on both the time and space coordinates. In Eddington–Finkelstein, as in Schwarzschild coordinates, the metric is independent of the "time" (either t in Schwarzschild, or u or v in the various Eddington–Finkelstein coordinates), but none of these cover the complete spacetime.
In general relativity, the Oppenheimer–Snyder model is a solution to the Einstein field equations based on the Schwarzschild metric describing the collapse of an object of extreme mass into a black hole. [1] It is named after physicists J. Robert Oppenheimer and Hartland Snyder, who published it in 1939. [2]