Search results
Results from the WOW.Com Content Network
Taylor dispersion or Taylor diffusion is an apparent or effective diffusion of some scalar field arising on the large scale due to the presence of a strong, confined, zero-mean shear flow on the small scale. Essentially, the shear acts to smear out the concentration distribution in the direction of the flow, enhancing the rate at which it ...
In chemistry, the rate equation (also known as the rate law or empirical differential rate equation) is an empirical differential mathematical expression for the reaction rate of a given reaction in terms of concentrations of chemical species and constant parameters (normally rate coefficients and partial orders of reaction) only. [1]
In fluid dynamics, the Taylor microscale, which is sometimes called the turbulence length scale, is a length scale used to characterize a turbulent fluid flow. [1] This microscale is named after Geoffrey Ingram Taylor .
The Taylor polynomials for ln(1 + x) only provide accurate approximations in the range −1 < x ≤ 1. For x > 1, Taylor polynomials of higher degree provide worse approximations. The Taylor approximations for ln(1 + x) (black). For x > 1, the approximations diverge. Pictured is an accurate approximation of sin x around the point x = 0. The ...
A possible mechanism in two elementary steps that explains the rate equation is: NO 2 + NO 2 → NO + NO 3 (slow step, rate-determining) NO 3 + CO → NO 2 + CO 2 (fast step) In this mechanism the reactive intermediate species NO 3 is formed in the first step with rate r 1 and reacts with CO in the second step with rate r 2.
In fluid dynamics, the Taylor number (Ta) is a dimensionless quantity that characterizes the importance of centrifugal "forces" or so-called inertial forces due to rotation of a fluid about an axis, relative to viscous forces. [1] In 1923 Geoffrey Ingram Taylor introduced this quantity in his article on the stability of flow. [2]
Memoirs, American Mathematical Society 4, 1–51. Online; Bernt Øksendal (2000). Stochastic Differential Equations. An Introduction with Applications, 5th edition, corrected 2nd printing. Springer. ISBN 3-540-63720-6. Sections 4.1 and 4.2. Philip E Protter (2005). Stochastic Integration and Differential Equations, 2nd edition. Springer. ISBN 3 ...
Marx identified three historical phases of development - the "mystical" differential calculus of Newton and Leibniz, the "rational" differential calculus of d'Alembert, and the "purely algebraic" differential calculus of Lagrange. [10] However, as Marx was not aware of the work of Cauchy, he did not carry his historical development any further ...