Search results
Results from the WOW.Com Content Network
Mesh analysis (or the mesh current method) is a circuit analysis method for planar circuits. Planar circuits are circuits that can be drawn on a plane surface with no wires crossing each other. A more general technique, called loop analysis (with the corresponding network variables called loop currents ) can be applied to any circuit, planar or ...
Mesh generation is the practice of creating a mesh, a subdivision of a continuous geometric space into discrete geometric and topological cells. Often these cells form a simplicial complex. Usually the cells partition the geometric input domain. Mesh cells are used as discrete local approximations of the larger domain.
Mesh analysis: The number of current variables, and hence simultaneous equations to solve, equals the number of meshes. Every current source in a mesh reduces the number of unknowns by one. Mesh analysis can only be used with networks which can be drawn as a planar network, that is, with no crossing components. [3]: 94
Multiplatform open source application for the solution of physical problems based on the Hermes library: University of West Bohemia: 3.2: 2014-03-03: GNU GPL: Free: Linux, Windows: CalculiX: It is an Open Source FEA project. The solver uses a partially compatible ABAQUS file format. The pre/post-processor generates input data for many FEA and ...
The mesh may be recreated during simulation (a process called remeshing), but this can also introduce error, since all the existing data points must be mapped onto a new and different set of data points. Meshfree methods are intended to remedy these problems. Meshfree methods are also useful for:
One subset of numerical methods are Meshfree methods, which are defined as methods for which "a predefined mesh is not necessary, at least in field variable interpolation". Ideally, a meshfree method does not make use of a mesh "throughout the process of solving the problem governed by partial differential equations, on a given arbitrary domain ...
Gmsh is a finite-element mesh generator developed by Christophe Geuzaine and Jean-François Remacle. Released under the GNU General Public License, Gmsh is free software.. Gmsh contains 4 modules: for geometry description, meshing, solving and post-processing.
On triangular mesh surfaces, the problem of computing this mapping is called mesh parameterization. The parameter domain is the surface that the mesh is mapped onto. Parameterization was mainly used for mapping textures to surfaces. Recently, it has become a powerful tool for many applications in mesh processing.