Search results
Results from the WOW.Com Content Network
The exact k-ε equations contain many unknown and unmeasurable terms. For a much more practical approach, the standard k-ε turbulence model (Launder and Spalding, 1974 [3]) is used which is based on our best understanding of the relevant processes, thus minimizing unknowns and presenting a set of equations which can be applied to a large number of turbulent applications.
[10] [11] For an isentropic process, if also reversible, there is no transfer of energy as heat because the process is adiabatic; δQ = 0. In contrast, if the process is irreversible, entropy is produced within the system; consequently, in order to maintain constant entropy within the system, energy must be simultaneously removed from the ...
Topology optimization has a wide range of applications in aerospace, mechanical, bio-chemical and civil engineering. Currently, engineers mostly use topology optimization at the concept level of a design process. Due to the free forms that naturally occur, the result is often difficult to manufacture.
A transversely isotropic material is one with physical properties that are symmetric about an axis that is normal to a plane of isotropy. This transverse plane has infinite planes of symmetry and thus, within this plane, the material properties are the same in all directions.
As shown in the equations above, the use of the von Mises criterion as a yield criterion is only exactly applicable when the following material properties are isotropic, and the ratio of the shear yield strength to the tensile yield strength has the following value: [10]
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
Homogeneous isotropic linear elastic materials have their elastic properties uniquely determined by any two moduli among these; thus, given any two, any other of the elastic moduli can be calculated according to these formulas, provided both for 3D materials (first part of the table) and for 2D materials (second part).
Within the field of fluid dynamics, Homogeneous isotropic turbulence is an idealized version of the realistic turbulence, but amenable to analytical studies. The concept of isotropic turbulence was first introduced by G.I. Taylor in 1935. [1] The meaning of the turbulence is given below, [2] [3] [4]