Search results
Results from the WOW.Com Content Network
In deriving the Schwarzschild metric, it was assumed that the metric was vacuum, spherically symmetric and static. The static assumption is unneeded, as Birkhoff's theorem states that any spherically symmetric vacuum solution of Einstein's field equations is stationary; the Schwarzschild solution thus follows
The Schwarzschild solution, taken to be valid for all r > 0, is called a Schwarzschild black hole. It is a perfectly valid solution of the Einstein field equations, although (like other black holes) it has rather bizarre properties. For r < r s the Schwarzschild radial coordinate r becomes timelike and the time coordinate t becomes spacelike. [22]
In Einstein's theory of general relativity, the interior Schwarzschild metric (also interior Schwarzschild solution or Schwarzschild fluid solution) is an exact solution for the gravitational field in the interior of a non-rotating spherical body which consists of an incompressible fluid (implying that density is constant throughout the body) and has zero pressure at the surface.
Gullstrand–Painlevé coordinates are a particular set of coordinates for the Schwarzschild metric – a solution to the Einstein field equations which describes a black hole. The ingoing coordinates are such that the time coordinate follows the proper time of a free-falling observer who starts from far away at zero velocity, and the spatial ...
Metric tensors resulting from cases where the resultant differential equations can be solved exactly for a physically reasonable distribution of energy–momentum are called exact solutions. Examples of important exact solutions include the Schwarzschild solution and the Friedman-Lemaître-Robertson–Walker solution.
There are actually multiple possible ways to extend the exterior Schwarzschild solution into a maximally extended spacetime, but the Kruskal–Szekeres extension is unique in that it is a maximal, analytic, simply connected vacuum solution in which all maximally extended geodesics are either complete or else the curvature scalar diverges along ...
The Schwarzschild radius was named after the German astronomer Karl Schwarzschild, who calculated this exact solution for the theory of general relativity in 1916. The Schwarzschild radius is given as r s = 2 G M c 2 , {\displaystyle r_{\text{s}}={\frac {2GM}{c^{2}}},} where G is the gravitational constant , M is the object mass, and c is the ...
Schwarzschild's equation alone says nothing about how much warming would be required to restore balance. When meteorologists and climate scientists refer to "radiative transfer calculations" or "radiative transfer equations" (RTE), the phenomena of emission and absorption are handled by numerical integration of Schwarzschild's equation over a ...