Search results
Results from the WOW.Com Content Network
This is left blank for non-orientable polyhedra and hemipolyhedra (polyhedra with faces passing through their centers), for which the density is not well-defined. Note on Vertex figure images: The white polygon lines represent the "vertex figure" polygon. The colored faces are included on the vertex figure images help see their relations.
The relations can be made apparent by examining the vertex figures obtained by listing the faces adjacent to each vertex (remember that for uniform polyhedra all vertices are the same, that is vertex-transitive). For example, the cube has vertex figure 4.4.4, which is to say, three adjacent square faces.
Picture Name Schläfli symbol Vertex/Face configuration exact dihedral angle (radians) dihedral angle – exact in bold, else approximate (degrees) Platonic solids (regular convex)
This is an indexed list of the uniform and stellated polyhedra from the book Polyhedron Models, by Magnus Wenninger. The book was written as a guide book to building polyhedra as physical models. It includes templates of face elements for construction and helpful hints in building, and also brief descriptions on the theory behind these shapes.
In geometry, a vertex configuration is a shorthand notation for representing a polyhedron or tiling as the sequence of faces around a vertex. It has variously been called a vertex description , [ 1 ] [ 2 ] [ 3 ] vertex type , [ 4 ] [ 5 ] vertex symbol , [ 6 ] [ 7 ] vertex arrangement , [ 8 ] vertex pattern , [ 9 ] face-vector, [ 10 ] vertex ...
Vertex, edge and face of a cube. The Euler characteristic χ was classically defined for the surfaces of polyhedra, according to the formula = + where V, E, and F are respectively the numbers of vertices (corners), edges and faces in the given polyhedron. [2] Any convex polyhedron's surface has Euler characteristic
If one relaxes the requirement that the graph be cubic, there are much smaller non-Hamiltonian polyhedral graphs. The graph with the fewest vertices and edges is the 11-vertex and 18-edge Herschel graph, [4] and there also exists an 11-vertex non-Hamiltonian polyhedral graph in which all faces are triangles, the Goldner–Harary graph. [5]
The smallest polyhedron is the tetrahedron with 4 triangular faces, 6 edges, and 4 vertices. Named polyhedra primarily come from the families of platonic solids, Archimedean solids, Catalan solids, and Johnson solids, as well as dihedral symmetry families including the pyramids, bipyramids, prisms, antiprisms, and trapezohedrons.