Search results
Results from the WOW.Com Content Network
In mathematics, a polynomial decomposition expresses a polynomial f as the functional composition of polynomials g and h, where g and h have degree greater than 1; it is an algebraic functional decomposition. Algorithms are known for decomposing univariate polynomials in polynomial time.
Two problems where the factor theorem is commonly applied are those of factoring a polynomial and finding the roots of a polynomial equation; it is a direct consequence of the theorem that these problems are essentially equivalent.
Suppose f is analytic in a neighborhood of a and f(a) = 0.Then f has a Taylor series at a and its constant term is zero. Because this constant term is zero, the function f(x) / (x − a) will have a Taylor series at a and, when f ′ (a) ≠ 0, its constant term will not be zero.
If F is a field and f and g are polynomials in F[x] with g ≠ 0, then there exist unique polynomials q and r in F[x] with = + and such that the degree of r is smaller than the degree of g (using the convention that the polynomial 0 has a negative degree).
For example, 3 × 5 is an integer factorization of 15, and (x – 2)(x + 2) is a polynomial factorization of x 2 – 4. Factorization is not usually considered meaningful within number systems possessing division , such as the real or complex numbers , since any x {\displaystyle x} can be trivially written as ( x y ) × ( 1 / y ) {\displaystyle ...
For instance, in the above examples, the integer 3 can be partitioned into two parts as 2+1 only. Thus, there is only one monomial in B 3,2. However, the integer 6 can be partitioned into two parts as 5+1, 4+2, and 3+3. Thus, there are three monomials in B 6,2. Indeed, the subscripts of the variables in a monomial are the same as those given by ...
In mathematics, an irreducible polynomial is, roughly speaking, a polynomial that cannot be factored into the product of two non-constant polynomials.The property of irreducibility depends on the nature of the coefficients that are accepted for the possible factors, that is, the ring to which the coefficients of the polynomial and its possible factors are supposed to belong.
[1] [2] The harmonic polynomials form a subspace of the vector space of polynomials over the given field. In fact, they form a graded subspace. [3] For the real field (), the harmonic polynomials are important in mathematical physics. [4] [5] [6]