Search results
Results from the WOW.Com Content Network
Logo of Eurocode 7. In the Eurocode series of European standards (EN) related to construction, Eurocode 7: Geotechnical design (abbreviated EN 1997 or, informally, EC 7) describes how to design geotechnical structures, using the limit state design philosophy. It is published in two parts; "General rules" and "Ground investigation and testing".
Schematic cross section of a pressurized caisson. In geotechnical engineering, a caisson (/ ˈ k eɪ s ən,-s ɒ n /; borrowed from French caisson 'box', from Italian cassone 'large box', an augmentative of cassa) is a watertight retaining structure [1] used, for example, to work on the foundations of a bridge pier, for the construction of a concrete dam, [2] or for the repair of ships.
EN 1990: (Eurocode 0) Basis of structural design; EN 1991: (Eurocode 1) Actions on structures; EN 1992: (Eurocode 2) Design of concrete structures; EN 1993: (Eurocode 3) Design of steel structures; EN 1994: (Eurocode 4) Design of composite steel and concrete structures; EN 1995: (Eurocode 5) Design of timber structures; EN 1996: (Eurocode 6 ...
In total there are 58 EN Eurocode parts distributed in the ten Eurocodes (EN 1990 – 1999). All of the EN Eurocodes relating to materials have a Part 1-1 which covers the design of buildings and other civil engineering structures and a Part 1-2 for fire design.
Shallow foundations of a house versus the deep foundations of a skyscraper. Foundation with pipe fixtures coming through the sleeves. In engineering, a foundation is the element of a structure which connects it to the ground or more rarely, water (as with floating structures), transferring loads from the structure to the ground.
The standard also encompasses the structural design of bridge foundations [4] as well as the design and requirements of bridge bearings for both ordinary and moving bridges. [6] [7] In 2010, BS 5400 was superseded by the Structural Eurocodes for the design of new bridges. However, BS 5400 still serves as the foundation for assessment standards ...
A strap footing is a component of a building's foundation. It is a type of combined footing, [1] consisting of two or more column footings connected by a concrete beam. This type of beam is called a strap beam. It is used to help distribute the weight of either heavily or eccentrically loaded column footings to adjacent footings. [2]
A general bearing failure occurs when the load on the footing causes large movement of the soil on a shear failure surface which extends away from the footing and up to the soil surface. Calculation of the capacity of the footing in general bearing is based on the size of the footing and the soil properties.