enow.com Web Search

  1. Ad

    related to: hcf 36 and 48 in multiplication problems

Search results

  1. Results from the WOW.Com Content Network
  2. Least common multiple - Wikipedia

    en.wikipedia.org/wiki/Least_common_multiple

    A multiple of a number is the product of that number and an integer. For example, 10 is a multiple of 5 because 5 × 2 = 10, so 10 is divisible by 5 and 2. Because 10 is the smallest positive integer that is divisible by both 5 and 2, it is the least common multiple of 5 and 2.

  3. Computational complexity of mathematical operations - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    Graphs of functions commonly used in the analysis of algorithms, showing the number of operations versus input size for each function. The following tables list the computational complexity of various algorithms for common mathematical operations.

  4. Greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Greatest_common_divisor

    The greatest common divisor (GCD) of integers a and b, at least one of which is nonzero, is the greatest positive integer d such that d is a divisor of both a and b; that is, there are integers e and f such that a = de and b = df, and d is the largest such integer.

  5. Multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Multiplication_algorithm

    A multiplication algorithm is an algorithm ... Looking both those values up on the table yields 36 and 9, the difference of which is 27, which is the product of 9 and ...

  6. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    Synonyms for GCD include greatest common factor (GCF), highest common factor (HCF), highest common divisor (HCD), and greatest common measure (GCM). The greatest common divisor is often written as gcd( a , b ) or, more simply, as ( a , b ) , [ 3 ] although the latter notation is ambiguous, also used for concepts such as an ideal in the ring of ...

  7. Karatsuba algorithm - Wikipedia

    en.wikipedia.org/wiki/Karatsuba_algorithm

    Karatsuba multiplication of az+b and cz+d (boxed), and 1234 and 567 with z=100. Magenta arrows denote multiplication, amber denotes addition, silver denotes subtraction and cyan denotes left shift. (A), (B) and (C) show recursion with z=10 to obtain intermediate values. The Karatsuba algorithm is a fast multiplication algorithm.

  8. Multiple (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Multiple_(mathematics)

    In mathematics, a multiple is the product of any quantity and an integer. [1] In other words, for the quantities a and b, it can be said that b is a multiple of a if b = na for some integer n, which is called the multiplier.

  9. Ages of Three Children puzzle - Wikipedia

    en.wikipedia.org/wiki/Ages_of_Three_Children_puzzle

    The Ages of Three Children puzzle (sometimes referred to as the Census-Taker Problem [1]) is a logical puzzle in number theory which on first inspection seems to have insufficient information to solve. However, with closer examination and persistence by the solver, the question reveals its hidden mathematical clues, especially when the solver ...

  1. Ad

    related to: hcf 36 and 48 in multiplication problems