Search results
Results from the WOW.Com Content Network
Cramer's rule, implemented in a naive way, is computationally inefficient for systems of more than two or three equations. [7] In the case of n equations in n unknowns, it requires computation of n + 1 determinants, while Gaussian elimination produces the result with the same computational complexity as the computation of a single determinant.
The number of distinct terms (including those with a zero coefficient) in an n-th degree equation in two variables is (n + 1)(n + 2) / 2.This is because the n-th degree terms are ,, …,, numbering n + 1 in total; the (n − 1) degree terms are ,, …,, numbering n in total; and so on through the first degree terms and , numbering 2 in total, and the single zero degree term (the constant).
The logarithmic moment generating function (which is the cumulant-generating function) of a random variable is defined as: = [ ()].Let ,, … be a sequence of iid real random variables with finite logarithmic moment generating function, i.e. () < for all .
Cramér’s decomposition theorem, a statement about the sum of normal distributed random variable; Cramér's theorem (large deviations), a fundamental result in the theory of large deviations; Cramer's theorem (algebraic curves), a result regarding the necessary number of points to determine a curve
Cramer's rule is a closed-form expression, in terms of determinants, of the solution of a system of n linear equations in n unknowns. Cramer's rule is useful for reasoning about the solution, but, except for n = 2 or 3 , it is rarely used for computing a solution, since Gaussian elimination is a faster algorithm.
The Möller–Trumbore ray-triangle intersection algorithm, named after its inventors Tomas Möller and Ben Trumbore, is a fast method for calculating the intersection of a ray and a triangle in three dimensions without needing precomputation of the plane equation of the plane containing the triangle. [1]
In statistics, Cramér's V (sometimes referred to as Cramér's phi and denoted as φ c) is a measure of association between two nominal variables, giving a value between 0 and +1 (inclusive). It is based on Pearson's chi-squared statistic and was published by Harald Cramér in 1946. [1]
The result is named in honor of Harald Cramér and Calyampudi Radhakrishna Rao, [1] [2] [3] but has also been derived independently by Maurice Fréchet, [4] Georges Darmois, [5] and by Alexander Aitken and Harold Silverstone. [6] [7] It is also known as Fréchet-Cramér–Rao