enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Reduced chi-squared statistic - Wikipedia

    en.wikipedia.org/wiki/Reduced_chi-squared_statistic

    In statistics, the reduced chi-square statistic is used extensively in goodness of fit testing. It is also known as mean squared weighted deviation (MSWD) in isotopic dating [1] and variance of unit weight in the context of weighted least squares. [2] [3]

  3. Shrinkage (statistics) - Wikipedia

    en.wikipedia.org/wiki/Shrinkage_(statistics)

    In statistics, shrinkage is the reduction in the effects of sampling variation. In regression analysis, a fitted relationship appears to perform less well on a new data set than on the data set used for fitting. [1] In particular the value of the coefficient of determination 'shrinks'.

  4. Multiplicity (statistical mechanics) - Wikipedia

    en.wikipedia.org/wiki/Multiplicity_(statistical...

    However, it is useful as an intermediate step to calculate multiplicity as a function of and . This approach shows that the number of available macrostates is N + 1 . For example, in a very small system with N = 2 dipoles, there are three macrostates, corresponding to N ↑ = 0 , 1 , 2. {\displaystyle N_{\uparrow }=0,1,2.}

  5. Inverse-variance weighting - Wikipedia

    en.wikipedia.org/wiki/Inverse-variance_weighting

    For normally distributed random variables inverse-variance weighted averages can also be derived as the maximum likelihood estimate for the true value. Furthermore, from a Bayesian perspective the posterior distribution for the true value given normally distributed observations and a flat prior is a normal distribution with the inverse-variance weighted average as a mean and variance ().

  6. Variance reduction - Wikipedia

    en.wikipedia.org/wiki/Variance_reduction

    In mathematics, more specifically in the theory of Monte Carlo methods, variance reduction is a procedure used to increase the precision of the estimates obtained for a given simulation or computational effort. [1] Every output random variable from the simulation is associated with a variance which limits the precision of the simulation results.

  7. Goodman and Kruskal's lambda - Wikipedia

    en.wikipedia.org/wiki/Goodman_and_Kruskal's_lambda

    Although Goodman and Kruskal's lambda is a simple way to assess the association between variables, it yields a value of 0 (no association) whenever two variables are in accord—that is, when the modal category is the same for all values of the independent variable, even if the modal frequencies or percentages vary.

  8. Inverse probability weighting - Wikipedia

    en.wikipedia.org/wiki/Inverse_probability_weighting

    Inverse probability weighting is a statistical technique for estimating quantities related to a population other than the one from which the data was collected. Study designs with a disparate sampling population and population of target inference (target population) are common in application. [1]

  9. Deviance (statistics) - Wikipedia

    en.wikipedia.org/wiki/Deviance_(statistics)

    In statistics, deviance is a goodness-of-fit statistic for a statistical model; it is often used for statistical hypothesis testing.It is a generalization of the idea of using the sum of squares of residuals (SSR) in ordinary least squares to cases where model-fitting is achieved by maximum likelihood.