enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Schumann resonances - Wikipedia

    en.wikipedia.org/wiki/Schumann_resonances

    The global electromagnetic resonance phenomenon is named after physicist Winfried Otto Schumann who predicted it mathematically in 1952. Schumann resonances are the principal background in the part of the electromagnetic spectrum [2] from 3 Hz through 60 Hz [3] and appear as distinct peaks at extremely low frequencies around 7.83 Hz (fundamental), 14.3, 20.8, 27.3, and 33.8 Hz.

  3. Extremely low frequency - Wikipedia

    en.wikipedia.org/wiki/Extremely_low_frequency

    Also, the fundamental mode of the Earth–ionosphere cavity has the wavelength equal to the circumference of the Earth, which gives a resonance frequency of 7.8 Hz. This frequency, and higher resonance modes of 14, 20, 26, and 32 Hz, appear as peaks in the ELF spectrum and are called Schumann resonance.

  4. Earth–ionosphere waveguide - Wikipedia

    en.wikipedia.org/wiki/Earth–ionosphere_waveguide

    The dispersion characteristics of the Earth-ionospheric waveguide can be used for locating thunderstorm activity by measurements of the difference of the group time delay of lightning signals at adjacent frequencies up to distances of 10000 km. [7] The Schumann resonances allow to determine the global lightning activity. [9]

  5. Radio atmospheric signal - Wikipedia

    en.wikipedia.org/wiki/Radio_atmospheric_signal

    Measurements of Schumann resonances at only a few stations around the world can monitor the global lightning activity fairly well. [14] One can apply the dispersive property of the Earth–ionosphere waveguide by measuring the group velocity of a sferic signal at different frequencies together with its direction of arrival. The group time delay ...

  6. Atmospheric electricity - Wikipedia

    en.wikipedia.org/wiki/Atmospheric_electricity

    The Schumann resonances are a set of spectrum peaks in the extremely low frequency (ELF) portion of the Earth's electromagnetic field spectrum. Schumann resonance is due to the space between the surface of the Earth and the conductive ionosphere acting as a waveguide. The limited dimensions of the earth cause this waveguide to act as a resonant ...

  7. Resonance - Wikipedia

    en.wikipedia.org/wiki/Resonance

    However, resonance can also be detrimental, leading to excessive vibrations or even structural failure in some cases. [3] All systems, including molecular systems and particles, tend to vibrate at a natural frequency depending upon their structure; this frequency is known as a resonant frequency or resonance frequency.

  8. Radio propagation - Wikipedia

    en.wikipedia.org/wiki/Radio_propagation

    Radio propagation is the behavior of radio waves as they travel, or are propagated, from one point to another in vacuum, or into various parts of the atmosphere. [1]: 26‑1 As a form of electromagnetic radiation, like light waves, radio waves are affected by the phenomena of reflection, refraction, diffraction, absorption, polarization, and scattering. [2]

  9. Skywave - Wikipedia

    en.wikipedia.org/wiki/Skywave

    Even more serious fading can occur when signals arrive via two or more paths, for example when both single-hop and double-hop waves interfere with other, or when a skywave signal and a ground-wave signal arrive at about the same strength. This is the most common source of fading with nighttime AM broadcast signals.