enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gravitational redshift - Wikipedia

    en.wikipedia.org/wiki/Gravitational_redshift

    The gravitational weakening of light from high-gravity stars was predicted by John Michell in 1783 and Pierre-Simon Laplace in 1796, using Isaac Newton's concept of light corpuscles (see: emission theory) and who predicted that some stars would have a gravity so strong that light would not be able to escape.

  3. Gravitational lens - Wikipedia

    en.wikipedia.org/wiki/Gravitational_lens

    Gravitational lenses act equally on all kinds of electromagnetic radiation, not just visible light, and also in non-electromagnetic radiation, like gravitational waves. Weak lensing effects are being studied for the cosmic microwave background as well as galaxy surveys. Strong lenses have been observed in radio and x-ray regimes as well. If a ...

  4. Weak gravitational lensing - Wikipedia

    en.wikipedia.org/wiki/Weak_gravitational_lensing

    While the presence of any mass bends the path of light passing near it, this effect rarely produces the giant arcs and multiple images associated with strong gravitational lensing. Most lines of sight in the universe are thoroughly in the weak lensing regime, in which the deflection is impossible to detect in a single background source. However ...

  5. Tests of general relativity - Wikipedia

    en.wikipedia.org/wiki/Tests_of_general_relativity

    The gravitational redshift of a light wave as it moves upwards against a gravitational field (caused by the yellow star below). Einstein predicted the gravitational redshift of light from the equivalence principle in 1907, and it was predicted that this effect might be measured in the spectral lines of a white dwarf star , which has a very high ...

  6. General relativity - Wikipedia

    en.wikipedia.org/wiki/General_relativity

    Matching the theory's prediction to observational results for planetary orbits or, equivalently, assuring that the weak-gravity, low-speed limit is Newtonian mechanics, the proportionality constant is found to be =, where is the Newtonian constant of gravitation and the speed of light in vacuum. [42]

  7. Gravitational lensing formalism - Wikipedia

    en.wikipedia.org/wiki/Gravitational_lensing...

    In weak gravitational lensing, the Jacobian is mapped out by observing the effect of the shear on the ellipticities of background galaxies. This effect is purely statistical; the shape of any galaxy will be dominated by its random, unlensed shape, but lensing will produce a spatially coherent distortion of these shapes.

  8. Gravitational microlensing - Wikipedia

    en.wikipedia.org/wiki/Gravitational_microlensing

    A typical microlensing light curve is shown below: Typical light curve of gravitational microlensing event (OGLE-2005-BLG-006) with its model fitted (red) A typical microlensing event like this one has a very simple shape, and only one physical parameter can be extracted: the time scale, which is related to the lens mass, distance, and velocity.

  9. Gravitational wave - Wikipedia

    en.wikipedia.org/wiki/Gravitational_wave

    Polarization of a gravitational wave is just like polarization of a light wave except that the polarizations of a gravitational wave are 45 degrees apart, as opposed to 90 degrees. [56] In particular, in a "cross"-polarized gravitational wave, h × , the effect on the test particles would be basically the same, but rotated by 45 degrees, as ...