Search results
Results from the WOW.Com Content Network
Complex exponential function: The exponential function exactly maps all lines not parallel with the real or imaginary axis in the complex plane, to all logarithmic spirals in the complex plane with centre at : () = (+) + ⏟ = + = ( + ) ⏟ The pitch angle of the logarithmic spiral is the angle between the line and the imaginary axis.
Exponential functions occur very often in solutions of differential equations. The exponential functions can be defined as solutions of differential equations. Indeed, the exponential function is a solution of the simplest possible differential equation, namely ′ = .
Parameter plane of the complex exponential family f(z)=exp(z)+c with 8 external ( parameter) rays. In the theory of dynamical systems, the exponential map can be used as the evolution function of the discrete nonlinear dynamical system. [1]
The equation of a line on a linear–log plot, where the abscissa axis is scaled logarithmically (with a logarithmic base of n), would be = +. The equation for a line on a log–linear plot, with an ordinate axis logarithmically scaled (with a logarithmic base of n), would be:
A Lozenge diagram is a diagram that is used to describe different interpolation formulas that can be constructed for a given data set. A line starting on the left edge and tracing across the diagram to the right can be used to represent an interpolation formula if the following rules are followed: [ 5 ]
However, equation (3-11) is a 16th-order equation, and even if we factor out the four solutions for the fixed points and the 2-periodic points, it is still a 12th-order equation. Therefore, it is no longer possible to solve this equation to obtain an explicit function of a that represents the values of the 4-periodic points in the same way as ...
It is used to solve systems of linear differential equations. In the theory of Lie groups, the matrix exponential gives the exponential map between a matrix Lie algebra and the corresponding Lie group. Let X be an n×n real or complex matrix. The exponential of X, denoted by e X or exp(X), is the n×n matrix given by the power series = =!
exponential map (Lie theory) from a Lie algebra to a Lie group, More generally, in a manifold with an affine connection, (), where is a geodesic with initial velocity X, is sometimes also called the exponential map. The above two are special cases of this with respect to appropriate affine connections.