enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. X-ray diffraction - Wikipedia

    en.wikipedia.org/wiki/X-ray_diffraction

    Free-electron lasers have been developed for use in X-ray diffraction and crystallography. [27] These are the brightest X-ray sources currently available; with the X-rays coming in femtosecond bursts. The intensity of the source is such that atomic resolution diffraction patterns can be resolved for crystals otherwise too small for collection.

  3. X-ray crystallography - Wikipedia

    en.wikipedia.org/wiki/X-ray_crystallography

    An X-ray diffraction pattern of a crystallized enzyme. The pattern of spots (reflections) and the relative strength of each spot (intensities) can be used to determine the structure of the enzyme. The relative intensities of the reflections provides information to determine the arrangement of molecules within the crystal in atomic detail.

  4. Structure factor - Wikipedia

    en.wikipedia.org/wiki/Structure_factor

    Consider the scattering of a beam of wavelength by an assembly of particles or atoms stationary at positions , =, …,.Assume that the scattering is weak, so that the amplitude of the incident beam is constant throughout the sample volume (Born approximation), and absorption, refraction and multiple scattering can be neglected (kinematic diffraction).

  5. R-factor (crystallography) - Wikipedia

    en.wikipedia.org/wiki/R-factor_(crystallography)

    Crystallographers also use the Free R-Factor [3] to assess possible overmodeling of the data. R F r e e {\displaystyle R_{Free}} is computed according to the same formula given above, but on a small, random sample of data that are set aside for the purpose and never included in the refinement.

  6. Grazing incidence diffraction - Wikipedia

    en.wikipedia.org/wiki/Grazing_incidence_diffraction

    Grazing incidence diffraction geometry. The angle of incidence, α, is close to the critical angle for the sample. The beam is diffracted in the plane of the surface of the sample by the angle 2θ, and often also out of the plane.

  7. Powder diffraction - Wikipedia

    en.wikipedia.org/wiki/Powder_diffraction

    Nevertheless, powder X-ray diffraction is a powerful and useful technique in its own right. It is mostly used to characterize and identify phases, and to refine details of an already known structure, rather than solving unknown structures. Advantages of the technique are: simplicity of sample preparation; rapidity of measurement

  8. XRD - Wikipedia

    en.wikipedia.org/wiki/XRD

    XRD may refer to: X-ray diffraction , used to study the structure, composition, and physical properties of materials Extensible Resource Descriptor , an XML format for discovery of metadata about a web resource

  9. X-ray emission spectroscopy - Wikipedia

    en.wikipedia.org/wiki/X-ray_emission_spectroscopy

    This is because X-rays have a refractive index n ≈ 1. Bragg came up with the equation that describes X-ray/neutron diffraction when those particles pass a crystal lattice.(X-ray diffraction) For this purpose, "perfect crystals" have been produced in many shapes, depending on the geometry and energy range of the instrument.