Search results
Results from the WOW.Com Content Network
Voltage standing wave ratio (VSWR) (pronounced "vizwar" [1] [2]) is the ratio of maximum to minimum voltage on a transmission line . For example, a VSWR of 1.2 means a peak voltage 1.2 times the minimum voltage along that line, if the line is at least one half wavelength long.
To test for a match, the reference impedance of the bridge is set to the expected load impedance (for example, 50 Ohms), and the transmission line connected as the unknown impedance. RF power is applied to the circuit. The voltage at the line input represents the vector sum of the forward wave, and the wave reflected from the load.
A test setup using a waveguide slotted line Figure 3. Co-axial slotted line. A typical test setup with a waveguide slotted line is shown in figure 2. Referring to this figure, power from a test equipment source (not shown) enters the apparatus through the co-axial cable on the left and is converted to waveguide format by means of a launcher (1 ...
That is, the generator can be represented as an ideal voltage generator of twice the voltage it is to deliver and an internal impedance of . [2] Fig. 3. Open circuit generator. However, if the generator is left open circuit, a voltage of appears at the generator output terminals as in figure 3. The same situation pertains if a very short ...
Live testing. Earth fault loop impedance testing: this test is to check that if a fault did occur, that the system meets requirements to cause a disconnection of the supply within the time limit specified by standards Insulation resistance testing Polarity test: a test to check that the connections are connected in the right sequence
The input impedance of an infinite line is equal to the characteristic impedance since the transmitted wave is never reflected back from the end. Equivalently: The characteristic impedance of a line is that impedance which, when terminating an arbitrary length of line at its output, produces an input impedance of equal value. This is so because ...
In radio frequency (RF) practice this is often measured in a dimensionless ratio known as voltage standing wave ratio (VSWR) with a VSWR bridge. The ratio of energy bounced back depends on the impedance mismatch. Mathematically, it is defined using the reflection coefficient. [2]
The characteristic impedance or surge impedance (usually written Z 0) of a uniform transmission line is the ratio of the amplitudes of voltage and current of a single wave propagating along the line; that is, a wave travelling in one direction in the absence of reflections in the other direction. Alternatively and equivalently it can be defined ...