enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Data transformation (computing) - Wikipedia

    en.wikipedia.org/wiki/Data_transformation...

    Traditionally, data transformation has been a bulk or batch process, [6] whereby developers write code or implement transformation rules in a data integration tool, and then execute that code or those rules on large volumes of data. [7] This process can follow the linear set of steps as described in the data transformation process above.

  3. Data transformation (statistics) - Wikipedia

    en.wikipedia.org/wiki/Data_transformation...

    The reciprocal transformation, some power transformations such as the Yeo–Johnson transformation, and certain other transformations such as applying the inverse hyperbolic sine, can be meaningfully applied to data that include both positive and negative values [10] (the power transformation is invertible over all real numbers if λ is an odd ...

  4. Data reduction - Wikipedia

    en.wikipedia.org/wiki/Data_reduction

    Data reduction is the transformation of numerical or alphabetical digital information derived empirically or experimentally into a corrected, ordered, and simplified form. . The purpose of data reduction can be two-fold: reduce the number of data records by eliminating invalid data or produce summary data and statistics at different aggregation levels for various applications

  5. Data analysis - Wikipedia

    en.wikipedia.org/wiki/Data_analysis

    Data science process flowchart from Doing Data Science, by Schutt & O'Neil (2013) Analysis refers to dividing a whole into its separate components for individual examination. [10] Data analysis is a process for obtaining raw data, and subsequently converting it into information useful for decision-making by users. [1]

  6. Dimensionality reduction - Wikipedia

    en.wikipedia.org/wiki/Dimensionality_reduction

    The data transformation may be linear, as in principal component analysis (PCA), but many nonlinear dimensionality reduction techniques also exist. [4] [5] For multidimensional data, tensor representation can be used in dimensionality reduction through multilinear subspace learning. [6]

  7. Data mapping - Wikipedia

    en.wikipedia.org/wiki/Data_mapping

    In computing and data management, data mapping is the process of creating data element mappings between two distinct data models. Data mapping is used as a first step for a wide variety of data integration tasks, including: [1] Data transformation or data mediation between a data source and a destination

  8. Data conversion - Wikipedia

    en.wikipedia.org/wiki/Data_conversion

    Data conversion is the conversion of computer data from one format to another. Throughout a computer environment, data is encoded in a variety of ways. For example, computer hardware is built on the basis of certain standards, which requires that data contains, for example, parity bit checks.

  9. Data compression - Wikipedia

    en.wikipedia.org/wiki/Data_compression

    Data compression aims to reduce the size of data files, enhancing storage efficiency and speeding up data transmission. K-means clustering, an unsupervised machine learning algorithm, is employed to partition a dataset into a specified number of clusters, k, each represented by the centroid of its points.