enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Non-Mendelian inheritance - Wikipedia

    en.wikipedia.org/wiki/Non-Mendelian_inheritance

    Co-dominant expression of genes for plumage colours. In cases of co-dominance, the genetic traits of both different alleles of the same gene-locus are clearly expressed in the phenotype. For example, in certain varieties of chicken, the allele for black feathers is co-dominant with the allele for white feathers.

  3. Disassortative mating - Wikipedia

    en.wikipedia.org/wiki/Disassortative_mating

    Imprinting is one example of disassortative mating. A model shows that individuals imprint on a genetically transmitted trait during early ontogeny and choosy females later use those parental images as a basis of mate choice. A viability-reducing trait may be maintained even without the fertility cost of same-type matings. [5]

  4. Heterozygote advantage - Wikipedia

    en.wikipedia.org/wiki/Heterozygote_advantage

    A heterozygote advantage describes the case in which the heterozygous genotype has a higher relative fitness than either the homozygous dominant or homozygous recessive genotype. Loci exhibiting heterozygote advantage are a small minority of loci. [1] The specific case of heterozygote advantage due to a single locus is known as overdominance.

  5. Zygosity - Wikipedia

    en.wikipedia.org/wiki/Zygosity

    Alternatively, a heterozygote for gene "R" is assumed to be "Rr". The uppercase letter is usually written first. [citation needed] If the trait in question is determined by simple (complete) dominance, a heterozygote will express only the trait coded by the dominant allele, and the trait coded by the recessive allele will not be present.

  6. Underdominance - Wikipedia

    en.wikipedia.org/wiki/Underdominance

    In genetics, underdominance, also known as homozygote advantage, heterozygote disadvantage, or negative overdominance," [1] is the opposite of overdominance. It is the selection against the heterozygote , causing disruptive selection [ 2 ] and divergent genotypes .

  7. Human genetics - Wikipedia

    en.wikipedia.org/wiki/Human_genetics

    X-linked dominant inheritance will show the same phenotype as a heterozygote and homozygote. Just like X-linked inheritance, there will be a lack of male-to-male inheritance, which makes it distinguishable from autosomal traits. One example of an X-linked trait is Coffin–Lowry syndrome, which is caused by a mutation in ribosomal protein gene ...

  8. Compound heterozygosity - Wikipedia

    en.wikipedia.org/wiki/Compound_heterozygosity

    In medical genetics, compound heterozygosity is the condition of having two or more heterogeneous recessive alleles at a particular locus that can cause genetic disease in a heterozygous state; that is, an organism is a compound heterozygote when it has two recessive alleles for the same gene, but with those two alleles being different from each other (for example, both alleles might be ...

  9. Disruptive selection - Wikipedia

    en.wikipedia.org/wiki/Disruptive_selection

    As a consequence of this type of selective pressure, our hypothetical rabbit population would be disruptively selected for extreme values of the fur colour trait: white or black, but not grey. This is an example of underdominance (heterozygote disadvantage) leading to disruptive selection.