Search results
Results from the WOW.Com Content Network
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
Power series are useful in mathematical analysis, where they arise as Taylor series of infinitely differentiable functions. In fact, Borel's theorem implies that every power series is the Taylor series of some smooth function. In many situations, the center c is equal to zero, for instance for Maclaurin series.
Whereas the harmonic number difference computes the integral in a global sliding window, the double series, in parallel, computes the sum in a local sliding window—a shifting -tuple—over the harmonic series, advancing the window by positions to select the next -tuple, and offsetting each element of each tuple by relative to the window's ...
In these limits, the infinitesimal change is often denoted or .If () is differentiable at , (+) = ′ ().This is the definition of the derivative.All differentiation rules can also be reframed as rules involving limits.
This category is for mathematical identities, i.e. identically true relations holding in some area of algebra (including abstract algebra, or formal power series). Subcategories This category has only the following subcategory.
In mathematics, the power series method is used to seek a power series solution to certain differential equations. In general, such a solution assumes a power series with unknown coefficients, then substitutes that solution into the differential equation to find a recurrence relation for the coefficients.
The most general power rule is the functional power rule: for any functions and , ′ = () ′ = (′ + ′ ), wherever both sides are well defined. Special cases: If f ( x ) = x a {\textstyle f(x)=x^{a}} , then f ′ ( x ) = a x a − 1 {\textstyle f'(x)=ax^{a-1}} when a {\textstyle a} is any nonzero real number and x {\textstyle x} is ...
The next formulas for powers, logarithms, and compositions of formal power series are expanded by these polynomials with variables in the coefficients of the original generating functions. [ 4 ] [ 5 ] The formula for the exponential of a generating function is given implicitly through the Bell polynomials by the EGF for these polynomials ...