Search results
Results from the WOW.Com Content Network
Low-temperature fluorine phases. Fluorine solidifies at −220 °C (−363 °F) [5] into a cubic structure, called beta-fluorine. This phase is transparent and soft, with significant disorder of the molecules; its density is 1.70 g/cm 3. At −228 °C (−378 °F) fluorine undergoes a solid–solid phase transition into a monoclinic structure ...
In physics, chemistry, and other related fields like biology, a phase transition (or phase change) is the physical process of transition between one state of a medium and another. Commonly the term is used to refer to changes among the basic states of matter : solid , liquid , and gas , and in rare cases, plasma .
The commonly known phases solid, liquid and vapor are separated by phase boundaries, i.e. pressure–temperature combinations where two phases can coexist. At the triple point, all three phases can coexist. However, the liquid–vapor boundary terminates in an endpoint at some critical temperature T c and critical pressure p c. This is the ...
In the physical sciences, a phase is a region of material that is chemically uniform, physically distinct, and (often) mechanically separable. In a system consisting of ice and water in a glass jar, the ice cubes are one phase, the water is a second phase, and the humid air is a third phase over the ice and water.
Fluorine is a chemical element; it has symbol F and atomic number 9. It is the lightest halogen [note 1] and exists at standard conditions as pale yellow diatomic gas. Fluorine is extremely reactive as it reacts with all other elements except for the light inert gases. It is highly toxic.
Dispersion is a process by which (in the case of solid dispersing in a liquid) agglomerated particles are separated from each other, and a new interface between the inner surface of the liquid dispersion medium and the surface of the dispersed particles is generated. This process is facilitated by molecular diffusion and convection. [4]
Through the use of high affinity of fluorous tags (ponytails) for fluorous phases or fluorous-derivatized solid phases allows for near complete recovery of the tagged reagent (i.e., near complete reduction in a chemical waste stream), making the use of fluorous chemistry techniques a popular topic in green chemistry. [3]
Fluorine is a principal component of the strongest known charge-neutral acid, fluoroantimonic acid (H 2 FSbF 6). [30] There is evidence for an even stronger acid called fluoroauric acid (H 2 FAuF 6) but it has not proved isolable. [31] In a molecule that is composed of a central atoms and fluorines attached to it, the intermolecular bonding is ...