enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Biopterin-dependent aromatic amino acid hydroxylase - Wikipedia

    en.wikipedia.org/wiki/Biopterin-dependent...

    Phenylalanine hydroxylase catalyzes the conversion of L-phenylalanine to L-tyrosine. Tyrosine hydroxylase catalyzes the rate-limiting step in catecholamine biosynthesis: the conversion of L-tyrosine to L-DOPA. Similarly, tryptophan hydroxylase catalyzes the rate-limiting step in serotonin biosynthesis: the conversion of L-tryptophan to 5 ...

  3. Tyrosine hydroxylase - Wikipedia

    en.wikipedia.org/wiki/Tyrosine_hydroxylase

    Tyrosine hydroxylase or tyrosine 3-monooxygenase is the enzyme responsible for catalyzing the conversion of the amino acid L-tyrosine to L-3,4-dihydroxyphenylalanine (L-DOPA). [5] [6] It does so using molecular oxygen (O 2), as well as iron (Fe 2+) and tetrahydrobiopterin as cofactors.

  4. L-DOPA - Wikipedia

    en.wikipedia.org/wiki/L-DOPA

    l-DOPA is produced from the amino acid l-tyrosine by the enzyme tyrosine hydroxylase. l-DOPA can act as an l-tyrosine mimetic and be incorporated into proteins by mammalian cells in place of l-tyrosine, generating protease-resistant and aggregate-prone proteins in vitro and may contribute to neurotoxicity with chronic l-DOPA administration. [10]

  5. Phenylalanine - Wikipedia

    en.wikipedia.org/wiki/Phenylalanine

    L-Phenylalanine is biologically converted into L-tyrosine, another one of the DNA-encoded amino acids. L-tyrosine in turn is converted into L-DOPA, which is further converted into dopamine, norepinephrine (noradrenaline), and epinephrine (adrenaline). The latter three are known as the catecholamines.

  6. Catecholamine - Wikipedia

    en.wikipedia.org/wiki/Catecholamine

    In humans, catecholamines (shown in yellow) are derived from the amino acid L-phenylalanine. L-Phenylalanine is converted into L-tyrosine by an aromatic amino acid hydroxylase (AAAH) enzyme (phenylalanine 4-hydroxylase), with molecular oxygen (O 2) and tetrahydrobiopterin as cofactors. L-Tyrosine is converted into L-DOPA by another AAAH enzyme ...

  7. Phenylalanine hydroxylase - Wikipedia

    en.wikipedia.org/wiki/Phenylalanine_hydroxylase

    Phenylalanine hydroxylase (PAH) (EC 1.14.16.1) is an enzyme that catalyzes the hydroxylation of the aromatic side-chain of phenylalanine to generate tyrosine.PAH is one of three members of the biopterin-dependent aromatic amino acid hydroxylases, a class of monooxygenase that uses tetrahydrobiopterin (BH 4, a pteridine cofactor) and a non-heme iron for catalysis.

  8. Phenylketonuria - Wikipedia

    en.wikipedia.org/wiki/Phenylketonuria

    Tetrahydrobiopterin is required to convert Phe to Tyr and is required to convert Tyr to L-DOPA via the enzyme tyrosine hydroxylase. L-DOPA, in turn, is converted to dopamine. Low levels of dopamine lead to high levels of prolactin. By contrast, in classical PKU (without dihydrobiopterin involvement), prolactin levels would be relatively normal.

  9. 3,4-dihydroxyphenylalanine oxidative deaminase - Wikipedia

    en.wikipedia.org/wiki/3,4-dihydroxyphenylalanine...

    3,4-dihydroxyphenylalanine oxidative deaminase (EC 1.13.12.15, 3,4-dihydroxy-L-phenylalanine: oxidative deaminase, oxidative deaminase, DOPA oxidative deaminase, DOPAODA) is an enzyme with systematic name 3,4-dihydroxy-L-phenylalanine:oxygen oxidoreductase (deaminating). [1] This enzyme catalyses the following chemical reaction