Search results
Results from the WOW.Com Content Network
FCCS is an extension of the fluorescence correlation spectroscopy (FCS) method that uses two fluorescent molecules instead of one that emits different colours. The technique measures coincident green and red intensity fluctuations of distinct molecules that correlate if green and red labelled particles move together through a predefined confocal volume. [2]
Dual color fluorescence cross-correlation spectroscopy (FCCS) measures interactions by cross-correlating two or more fluorescent channels (one channel for each reactant), which distinguishes interactions more sensitively than FCS, particularly when the mass change in the reaction is small.
FCS also tells you the size of the formed complexes so you can measure the stoichiometry of binding. A more powerful methods is fluorescence cross-correlation spectroscopy (FCCS) that employs double labeling techniques and cross-correlation resulting in vastly improved signal-to-noise ratios over FCS. Furthermore, the two-photon and three ...
Spectrochemistry is the application of spectroscopy in several fields of chemistry. It includes analysis of spectra in chemical terms, and use of spectra to derive the structure of chemical compounds, and also to qualitatively and quantitively analyze their presence in the sample.
In physics and physical chemistry, time-resolved spectroscopy is the study of dynamic processes in materials or chemical compounds by means of spectroscopic techniques.Most often, processes are studied after the illumination of a material occurs, but in principle, the technique can be applied to any process that leads to a change in properties of a material.
X!Tandem matches tandem mass spectra with peptide sequences. WsearchVS2020 Freeware WsearchVS2020 is a data analysis software that can display spectra acquired on commercial MS instruments and can also search/match the NIST commercial database.
Multiple-pass or long path absorption cells are commonly used in spectroscopy to measure low-concentration components or to observe weak spectra in gases or liquids. Several important advances were made in this area beginning in the 1930s, and research into a wide range of applications continues to the present day.
Linear combination fitting of several different standard spectra can give an estimate to the amount of each of the known standard spectra within an unknown sample. The dominant physical process in x-ray absorption is one where the absorbed photon ejects a core photoelectron from the absorbing atom, leaving behind a core hole. [ 1 ]