Search results
Results from the WOW.Com Content Network
The Nyquist plot for () = + + with s = jω.. In control theory and stability theory, the Nyquist stability criterion or Strecker–Nyquist stability criterion, independently discovered by the German electrical engineer Felix Strecker [] at Siemens in 1930 [1] [2] [3] and the Swedish-American electrical engineer Harry Nyquist at Bell Telephone Laboratories in 1932, [4] is a graphical technique ...
Liénard–Chipart criterion; Nyquist stability criterion; Routh–Hurwitz stability criterion; Vakhitov–Kolokolov stability criterion; Barkhausen stability criterion; Stability may also be determined by means of root locus analysis. Although the concept of stability is general, there are several narrower definitions through which it may be ...
The M circle with M = 0.45 is highlighted in red and intercepts the Nyquist plot at frequencies . Hall circles (also known as M-circles and N-circles ) are a graphical tool in control theory used to obtain values of a closed-loop transfer function from the Nyquist plot (or the Nichols plot ) of the associated open-loop transfer function.
Example of magnitude of the Fourier transform of a bandlimited function. The Nyquist–Shannon sampling theorem is a theorem in the field of signal processing which serves as a fundamental bridge between continuous-time signals and discrete-time signals.
In nonlinear control and stability theory, the circle criterion is a stability criterion for nonlinear time-varying systems. It can be viewed as a generalization of the Nyquist stability criterion for linear time-invariant (LTI) systems .
The small-gain theorem gives a sufficient condition for finite-gain stability of the feedback connection. The small gain theorem was proved by George Zames in 1966. It can be seen as a generalization of the Nyquist criterion to non-linear time-varying MIMO systems (systems with multiple inputs and multiple outputs).
Harry Nyquist (/ ˈ n aɪ k w ɪ s t /, Swedish: [ˈnŷːkvɪst]; February 7, 1889 – April 4, 1976) was a Swedish-American physicist and electronic engineer who made important contributions to communication theory.
Fig 1: Typical example of Nyquist frequency and rate. They are rarely equal, because that would require over-sampling by a factor of 2 (i.e. 4 times the bandwidth). In signal processing , the Nyquist rate , named after Harry Nyquist , is a value equal to twice the highest frequency ( bandwidth ) of a given function or signal.