Search results
Results from the WOW.Com Content Network
The Sellmeier equation is an empirical relationship between refractive index and wavelength for a particular transparent medium. The equation is used to determine the dispersion of light in the medium. It was first proposed in 1872 by Wolfgang Sellmeier and was a development of the work of Augustin Cauchy on Cauchy's equation for modelling ...
A silicon–oxygen bond (Si−O bond) is a chemical bond between silicon and oxygen atoms that can be found in many inorganic and organic compounds. [1] In a silicon–oxygen bond, electrons are shared unequally between the two atoms , with oxygen taking the larger share due to its greater electronegativity .
One common form of polar interaction is the hydrogen bond, which is also known as the H-bond. For example, water forms H-bonds and has a molar mass M = 18 and a boiling point of +100 °C, compared to nonpolar methane with M = 16 and a boiling point of –161 °C.
Wolfgang Sellmeier was a German theoretical physicist who made major contributions to the understanding of the interactions between light and matter. [1] In 1872 he published his seminal work Ueber die durch die Aetherschwingungen erregten Mitschwingungen der Körpertheilchen und deren Rückwirkung auf die ersteren, besonders zur Erklärung der ...
In optics, Cauchy's transmission equation is an empirical relationship between the refractive index and wavelength of light for a particular transparent material. It is named for the mathematician Augustin-Louis Cauchy , who originally defined it in 1830 in his article "The refraction and reflection of light".
The water content (and therefore infrared transmission) of fused quartz is determined by the manufacturing process. Flame-fused material always has a higher water content due to the combination of the hydrocarbons and oxygen fueling the furnace, forming hydroxyl [OH] groups within the material. An IR grade material typically has an [OH] content ...
In dimeric silicon dioxide there are two oxygen atoms bridging between the silicon atoms with an Si–O–Si angle of 94° and bond length of 164.6 pm and the terminal Si–O bond length is 150.2 pm. The Si–O bond length is 148.3 pm, which compares with the length of 161 pm in α-quartz. The bond energy is estimated at 621.7 kJ/mol. [21]
Bond length? Bond angle? Magnetic susceptibility? ... Table of Coefficients of Sellmeier equation; Coefficient: for ordinary wave: for extraordinary wave: B 1: 1 ...