Search results
Results from the WOW.Com Content Network
Lastly we have the problem wherein the storage of the floating point data may be in big endian or little endian memory order and thus the sign bit could be in the least significant byte or the most significant byte. Therefore the use of type punning with floating point data is a questionable method with unpredictable results.
Compiled Java code files are generally smaller than code files in C++ as Java bytecode is usually more compact than native machine code and Java programs are never statically linked. C++ compiling features an added textual preprocessing phase, while Java does not. Thus some users add a preprocessing phase to their build process for better ...
C and C++ perform such promotion for objects of Boolean, character, wide character, enumeration, and short integer types which are promoted to int, and for objects of type float, which are promoted to double. Unlike some other type conversions, promotions never lose precision or modify the value stored in the object. In Java:
Programming languages that support arbitrary precision computations, either built-in, or in the standard library of the language: Ada: the upcoming Ada 202x revision adds the Ada.Numerics.Big_Numbers.Big_Integers and Ada.Numerics.Big_Numbers.Big_Reals packages to the standard library, providing arbitrary precision integers and real numbers.
In the most SQL dialects the double dash (--) can be used instead. Esoteric languages. Many esoteric programming languages follow the convention that any text not executed by the instruction pointer (e.g., Befunge) or otherwise assigned a meaning (e.g., Brainfuck), is considered a "comment".
Floating-point arithmetic operations are performed by software, and double precision is not supported at all. The extended format occupies three 16-bit words, with the extra space simply ignored. [3] The IBM System/360 supports a 32-bit "short" floating-point format and a 64-bit "long" floating-point format. [4]
In the floating-point case, a variable exponent would represent the power of ten to which the mantissa of the number is multiplied. Languages that support a rational data type usually allow the construction of such a value from two integers, instead of a base-2 floating-point number, due to the loss of exactness the latter would cause.
Minifloats (in Survey of Floating-Point Formats) OpenEXR site; Half precision constants from D3DX; OpenGL treatment of half precision; Fast Half Float Conversions; Analog Devices variant (four-bit exponent) C source code to convert between IEEE double, single, and half precision can be found here; Java source code for half-precision floating ...