Search results
Results from the WOW.Com Content Network
The Tsuji–Trost reaction (also called the Trost allylic alkylation or allylic alkylation) is a palladium-catalysed substitution reaction involving a substrate that contains a leaving group in an allylic position. The palladium catalyst first coordinates with the allyl group and then undergoes oxidative addition, forming the π-allyl
Organopalladium chemistry is a branch of organometallic chemistry that deals with organic palladium compounds and their reactions. Palladium is often used as a catalyst in the reduction of alkenes and alkynes with hydrogen. This process involves the formation of a palladium-carbon covalent bond.
The primary application of palladium in electronics is in multi-layer ceramic capacitors [51] in which palladium (and palladium-silver alloy) is used for electrodes. [41] Palladium (sometimes alloyed with nickel) is or can be used for component and connector plating in consumer electronics [ 52 ] [ 53 ] and in soldering materials.
The heterogeneous process ultimately failed due to catalyst inactivation and was replaced by the water-based homogeneous system for which a pilot plant was operational in 1958. Problems with the aggressive catalyst solution were solved by adopting titanium (newly available for industrial use) as construction material for reactors and pumps ...
The Suzuki reaction or Suzuki coupling is an organic reaction that uses a palladium complex catalyst to cross-couple a boronic acid to an organohalide. [1] [2] [3] It was first published in 1979 by Akira Suzuki, and he shared the 2010 Nobel Prize in Chemistry with Richard F. Heck and Ei-ichi Negishi for their contribution to the discovery and development of noble metal catalysis in organic ...
A large variety of phosphine-based ligands may be used in palladium-phosphine catalysts. Bulky, electron-rich ligands such as tris(2,4,6-trimethoxyphenyl)phosphine result in catalysts that are more reactive in the oxidative addition step [2] and can catalyze the coupling of aryl chlorides, which are typically unreactive. [5]
The mechanism of the Stille reaction has been extensively studied. [11] [23] The catalytic cycle involves an oxidative addition of a halide or pseudohalide (2) to a palladium catalyst (1), transmetalation of 3 with an organotin reagent (4), and reductive elimination of 5 to yield the coupled product (7) and the regenerated palladium catalyst (1).
The Czochralski method, also Czochralski technique or Czochralski process, is a method of crystal growth used to obtain single crystals of semiconductors (e.g. silicon, germanium and gallium arsenide), metals (e.g. palladium, platinum, silver, gold), salts and synthetic gemstones.