enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Einstein field equations - Wikipedia

    en.wikipedia.org/wiki/Einstein_field_equations

    The Einstein field equations (EFE) may be written in the form: [5] [1] + = EFE on the wall of the Rijksmuseum Boerhaave in Leiden, Netherlands. where is the Einstein tensor, is the metric tensor, is the stress–energy tensor, is the cosmological constant and is the Einstein gravitational constant.

  3. Friedmann equations - Wikipedia

    en.wikipedia.org/wiki/Friedmann_equations

    The relation between the actual density and the critical density determines the overall geometry of the universe; when they are equal, the geometry of the universe is flat (Euclidean). In earlier models, which did not include a cosmological constant term, critical density was initially defined as the watershed point between an expanding and a ...

  4. Friedmann–Lemaître–Robertson–Walker metric - Wikipedia

    en.wikipedia.org/wiki/Friedmann–Lemaître...

    Assuming isotropy alone is sufficient to reduce the possible motions of mass in the universe to radial velocity variations. The Copernican principle, that our observation point in the universe is the equivalent to every other point, combined with isotropy ensures homogeneity. Without the principle, a metric would need to be extracted from ...

  5. Einstein–de Sitter universe - Wikipedia

    en.wikipedia.org/wiki/Einstein–de_sitter_universe

    The Einstein–de Sitter universe is a model of the universe proposed by Albert Einstein and Willem de Sitter in 1932. [1] On first learning of Edwin Hubble's discovery of a linear relation between the redshift of the galaxies and their distance, [2] Einstein set the cosmological constant to zero in the Friedmann equations, resulting in a model of the expanding universe known as the Friedmann ...

  6. Spacetime - Wikipedia

    en.wikipedia.org/wiki/Spacetime

    Let the number of spatial dimensions be N and the number of temporal dimensions be T. That N = 3 and T = 1, setting aside the compactified dimensions invoked by string theory and undetectable to date, can be explained by appealing to the physical consequences of letting N differ from 3 and T differ from 1. The argument is often of an anthropic ...

  7. Space - Wikipedia

    en.wikipedia.org/wiki/Space

    In classical physics, physical space is often conceived in three linear dimensions. Modern physicists usually consider it, with time, to be part of a boundless four-dimensional continuum known as spacetime. [2] The concept of space is considered to be of fundamental importance to an understanding of the physical universe.

  8. Cosmological perturbation theory - Wikipedia

    en.wikipedia.org/wiki/Cosmological_perturbation...

    The universe is believed to still be homogeneous enough that the theory is a good approximation on the largest scales, but on smaller scales more involved techniques, such as N-body simulations, must be used. When deciding whether to use general relativity for perturbation theory, note that Newtonian physics is only applicable in some cases ...

  9. Space (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Space_(mathematics)

    Linear operations, given in a linear space by definition, lead to such notions as straight lines (and planes, and other linear subspaces); parallel lines; ellipses (and ellipsoids). However, it is impossible to define orthogonal (perpendicular) lines, or to single out circles among ellipses, because in a linear space there is no structure like ...