enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hough transform - Wikipedia

    en.wikipedia.org/wiki/Hough_transform

    (Shapiro and Stockman, 310) Thus, the Hough transform must be used with great care to detect anything other than lines or circles. Finally, much of the efficiency of the Hough transform is dependent on the quality of the input data: the edges must be detected well for the Hough transform to be efficient.

  3. Generalised Hough transform - Wikipedia

    en.wikipedia.org/wiki/Generalised_Hough_transform

    The generalized Hough transform (GHT), introduced by Dana H. Ballard in 1981, is the modification of the Hough transform using the principle of template matching. [1] The Hough transform was initially developed to detect analytically defined shapes (e.g., line, circle, ellipse etc.). In these cases, we have knowledge of the shape and aim to ...

  4. Line detection - Wikipedia

    en.wikipedia.org/wiki/Line_detection

    The Hough transform [3] can be used to detect lines and the output is a parametric description of the lines in an image, for example ρ = r cos(θ) + c sin(θ). [1] If there is a line in a row and column based image space, it can be defined ρ, the distance from the origin to the line along a perpendicular to the line, and θ, the angle of the perpendicular projection from the origin to the ...

  5. Randomized Hough transform - Wikipedia

    en.wikipedia.org/wiki/Randomized_Hough_Transform

    Hough transforms are techniques for object detection, a critical step in many implementations of computer vision, or data mining from images. Specifically, the Randomized Hough transform is a probabilistic variant to the classical Hough transform, and is commonly used to detect curves (straight line, circle, ellipse, etc.) [1] The basic idea of Hough transform (HT) is to implement a voting ...

  6. Chessboard detection - Wikipedia

    en.wikipedia.org/wiki/Chessboard_detection

    Therefore, one expects that line detection algorithms should successfully detect these lines in practice. Indeed, the following figure demonstrates Hough transform-based line detection applied to a perspective-transformed chessboard image. Clearly, the Hough transform is able to accurately detect the lines induced by the board squares.

  7. Edge detection - Wikipedia

    en.wikipedia.org/wiki/Edge_detection

    If Hough transforms are used to detect lines and ellipses, then thinning could give much better results. If the edge happens to be the boundary of a region, then thinning could easily give the image parameters like perimeter without much algebra. There are many popular algorithms used to do this, one such is described below:

  8. Talk:Hough transform - Wikipedia

    en.wikipedia.org/wiki/Talk:Hough_transform

    There are three flavors of Hough transform. The first (original) was used to detect straight lines in bubble chamber images. The technique parameterizes pattern space, then projects all points of interest (typically edges found via Canny edge detection) into the parameter space.

  9. Robinson compass mask - Wikipedia

    en.wikipedia.org/wiki/Robinson_Compass_Mask

    An edge, or contour is an tiny area with neighboring distinct pixel values. The convolution of each mask with the image would create a high value output where there is a rapid change of pixel value, thus an edge point is found. All the detected edge points would line up as edges.