enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Relativistic Doppler effect - Wikipedia

    en.wikipedia.org/wiki/Relativistic_Doppler_effect

    The relativistic Doppler effect is the change in frequency, wavelength and amplitude [1] of light, caused by the relative motion of the source and the observer (as in the classical Doppler effect, first proposed by Christian Doppler in 1842 [2]), when taking into account effects described by the special theory of relativity.

  3. Doppler broadening - Wikipedia

    en.wikipedia.org/wiki/Doppler_broadening

    A particular case is the thermal Doppler broadening due to the thermal motion of the particles. Then, the broadening depends only on the frequency of the spectral line, the mass of the emitting particles, and their temperature , and therefore can be used for inferring the temperature of an emitting (or absorbing) body being spectroscopically ...

  4. On the coloured light of the binary stars and some other ...

    en.wikipedia.org/wiki/On_the_coloured_light_of...

    Front cover Albireo, a well-known coloured double star.Compare the colour of other stars in . On the coloured light of the binary stars and some other stars of the heavens or in the original German Über das farbige Licht der Doppelsterne und einiger anderer Gestirne des Himmels is a treatise by Christian Doppler (1842) [1] in which he postulated his principle that the observed frequency ...

  5. Doppler effect - Wikipedia

    en.wikipedia.org/wiki/Doppler_effect

    The Doppler effect (also Doppler shift) is the change in the frequency of a wave in relation to an observer who is moving relative to the source of the wave. [ 1 ] [ 2 ] [ 3 ] The Doppler effect is named after the physicist Christian Doppler , who described the phenomenon in 1842.

  6. Relativistic beaming - Wikipedia

    en.wikipedia.org/wiki/Relativistic_beaming

    Only a single jet is visible in M87. Two jets are visible in 3C 31.. In physics, relativistic beaming (also known as Doppler beaming, Doppler boosting, or the headlight effect) is the process by which relativistic effects modify the apparent luminosity of emitting matter that is moving at speeds close to the speed of light.

  7. List of relativistic equations - Wikipedia

    en.wikipedia.org/wiki/List_of_relativistic_equations

    This is the formula for the relativistic doppler shift where the difference in velocity between the emitter and observer is not on the x-axis. There are two special cases of this equation. The first is the case where the velocity between the emitter and observer is along the x-axis.

  8. Spectral line shape - Wikipedia

    en.wikipedia.org/wiki/Spectral_line_shape

    As the excited state decays exponentially in time this effect produces a line with Lorentzian shape in terms of frequency (or wavenumber). Doppler broadening. This is caused by the fact that the velocity of atoms or molecules relative to the observer follows a Maxwell distribution, so the effect is dependent on temperature. If this were the ...

  9. Relativistic aberration - Wikipedia

    en.wikipedia.org/wiki/Relativistic_aberration

    A consequence is that a forward observer should normally be expected to intercept a greater proportion of the object's light than a rearward one; this concentration of light in the object's forward direction is referred to as the "searchlight" or "headlight" effect. Light from a relativistic source becomes more forward directed and Doppler ...