enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rationalisation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Rationalisation_(mathematics)

    In elementary algebra, root rationalisation (or rationalization) is a process by which radicals in the denominator of an algebraic fraction are eliminated.. If the denominator is a monomial in some radical, say , with k < n, rationalisation consists of multiplying the numerator and the denominator by , and replacing by x (this is allowed, as, by definition, a n th root of x is a number that ...

  3. nth root - Wikipedia

    en.wikipedia.org/wiki/Nth_root

    The integer n is called the index or degree, and the number x of which the root is taken is the radicand. A root of degree 2 is called a square root and a root of degree 3, a cube root. Roots of higher degree are referred by using ordinal numbers, as in fourth root, twentieth root, etc. The computation of an n th root is a root extraction.

  4. Difference of two squares - Wikipedia

    en.wikipedia.org/wiki/Difference_of_two_squares

    The difference of two squares can also be illustrated geometrically as the difference of two square areas in a plane.In the diagram, the shaded part represents the difference between the areas of the two squares, i.e. .

  5. Square root - Wikipedia

    en.wikipedia.org/wiki/Square_root

    Notation for the (principal) square root of x. For example, √ 25 = 5, since 25 = 5 ⋅ 5, or 5 2 (5 squared). In mathematics, a square root of a number x is a number y such that =; in other words, a number y whose square (the result of multiplying the number by itself, or ) is x. [1]

  6. Methods of computing square roots - Wikipedia

    en.wikipedia.org/wiki/Methods_of_computing...

    A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...

  7. Conjugate (square roots) - Wikipedia

    en.wikipedia.org/wiki/Conjugate_(square_roots)

    As (+) = and (+) + =, the sum and the product of conjugate expressions do not involve the square root anymore. This property is used for removing a square root from a denominator, by multiplying the numerator and the denominator of a fraction by the conjugate of the denominator (see Rationalisation).

  8. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    Different values of k give different values of unless w is a rational number, that is, there is an integer d such that dw is an integer. This results from the periodicity of the exponential function, more specifically, that e a = e b {\displaystyle e^{a}=e^{b}} if and only if a − b {\displaystyle a-b} is an integer multiple of 2 π i ...

  9. Cube root - Wikipedia

    en.wikipedia.org/wiki/Cube_root

    The last two of these roots lead to a relationship between all roots of any real or complex number. If a number is one cube root of a particular real or complex number, the other two cube roots can be found by multiplying that cube root by one or the other of the two complex cube roots of 1.