Search results
Results from the WOW.Com Content Network
A sieve analysis (or gradation test) is a practice or procedure used in geology, civil engineering, [1] and chemical engineering [2] to assess the particle size distribution (also called gradation) of a granular material by allowing the material to pass through a series of sieves of progressively smaller mesh size and weighing the amount of material that is stopped by each sieve as a fraction ...
The Fineness Modulus (FM) is an empirical figure obtained by adding the total percentage of the sample of an aggregate retained on each of a specified series of sieves, dividing the sum by 100. Sieves sizes are: 150-μm (No. 100), 300-μm (No. 50), 600-μm (No. 30), 1.18-mm (No. 16), 2.36-mm (No. 8), 4.75-mm (No. 4), 9.5-mm (3/8-in.), 19.0-mm ...
PSD is usually defined by the method by which it is determined. The most easily understood method of determination is sieve analysis, where powder is separated on sieves of different sizes. Thus, the PSD is defined in terms of discrete size ranges: e.g. "% of sample between 45 μm and 53 μm", when sieves of these sizes are used.
Euler's proof of the zeta product formula contains a version of the sieve of Eratosthenes in which each composite number is eliminated exactly once. [9] The same sieve was rediscovered and observed to take linear time by Gries & Misra (1978). [19] It, too, starts with a list of numbers from 2 to n in order. On each step the first element is ...
Soil gradation is determined by analyzing the results of a sieve analysis or a hydrometer analysis. [4] [5] In a sieve analysis, a coarse-grained soil sample is shaken through a series of woven-wire square-mesh sieves. Each sieve has successively smaller openings so particles larger than the size of each sieve are retained on the sieve.
Although such information contains long lists of sieve sizes, in practice sieves are normally used in series in which each member sieve is selected to pass particles approximately 1/ √ 2 smaller in diameter or 1/2 smaller in cross-sectional area than the previous sieve. For example the series 80mm, 63, 40, 31.5, 20, 16, 14, 10, 8, 6.3, 4, 2.8 ...
A prime sieve or prime number sieve is a fast type of algorithm for finding primes. There are many prime sieves. The simple sieve of Eratosthenes (250s BCE), the sieve of Sundaram (1934), the still faster but more complicated sieve of Atkin [1] (2003), sieve of Pritchard (1979), and various wheel sieves [2] are most common.
The general number field sieve, on the other hand, manages to search for smooth numbers that are subexponential in the size of n. Since these numbers are smaller, they are more likely to be smooth than the numbers inspected in previous algorithms. This is the key to the efficiency of the number field sieve.