enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Expectation–maximization algorithm - Wikipedia

    en.wikipedia.org/wiki/Expectation–maximization...

    Itself can be extended into the Expectation conditional maximization either (ECME) algorithm. [35] This idea is further extended in generalized expectation maximization (GEM) algorithm, in which is sought only an increase in the objective function F for both the E step and M step as described in the As a maximizationmaximization procedure ...

  3. EM algorithm and GMM model - Wikipedia

    en.wikipedia.org/wiki/EM_Algorithm_And_GMM_Model

    The EM algorithm consists of two steps: the E-step and the M-step. Firstly, the model parameters and the () can be randomly initialized. In the E-step, the algorithm tries to guess the value of () based on the parameters, while in the M-step, the algorithm updates the value of the model parameters based on the guess of () of the E-step.

  4. Dynamic discrete choice - Wikipedia

    en.wikipedia.org/wiki/Dynamic_discrete_choice

    Estimation of dynamic discrete choice models is particularly challenging, due to the fact that the researcher must solve the backwards recursion problem for each guess of the structural parameters. The most common methods used to estimate the structural parameters are maximum likelihood estimation and method of simulated moments.

  5. Baum–Welch algorithm - Wikipedia

    en.wikipedia.org/wiki/Baum–Welch_algorithm

    In electrical engineering, statistical computing and bioinformatics, the Baum–Welch algorithm is a special case of the expectation–maximization algorithm used to find the unknown parameters of a hidden Markov model (HMM). It makes use of the forward-backward algorithm to compute the statistics for the expectation step. The Baum–Welch ...

  6. Naive Bayes classifier - Wikipedia

    en.wikipedia.org/wiki/Naive_Bayes_classifier

    This training algorithm is an instance of the more general expectation–maximization algorithm (EM): the prediction step inside the loop is the E-step of EM, while the re-training of naive Bayes is the M-step.

  7. Mean shift - Wikipedia

    en.wikipedia.org/wiki/Mean_shift

    where are the input samples and () is the kernel function (or Parzen window). is the only parameter in the algorithm and is called the bandwidth. This approach is known as kernel density estimation or the Parzen window technique. Once we have computed () from the equation above, we can find its local maxima using gradient ascent or some other optimization technique. The problem with this ...

  8. Golden-section search - Wikipedia

    en.wikipedia.org/wiki/Golden-section_search

    The golden-section search is a technique for finding an extremum (minimum or maximum) of a function inside a specified interval. For a strictly unimodal function with an extremum inside the interval, it will find that extremum, while for an interval containing multiple extrema (possibly including the interval boundaries), it will converge to one of them.

  9. Nelder–Mead method - Wikipedia

    en.wikipedia.org/wiki/Nelder–Mead_method

    An intuitive explanation of the algorithm from "Numerical Recipes": [5] The downhill simplex method now takes a series of steps, most steps just moving the point of the simplex where the function is largest (“highest point”) through the opposite face of the simplex to a lower point.