Search results
Results from the WOW.Com Content Network
Chemical vapor deposition (CVD) is a vacuum deposition method used to produce high-quality, and high-performance, solid materials. The process is often used in the semiconductor industry to produce thin films .
Download as PDF; Printable version; ... Chemical vapor deposition techniques (10 P) Pages in category "Chemical vapor deposition"
Techniques have been developed to produce carbon nanotubes (CNTs) in sizable quantities, including arc discharge, laser ablation, high-pressure carbon monoxide disproportionation, and chemical vapor deposition (CVD). Most of these processes take place in a vacuum or with process gases.
This category is being considered for merging into Category:Chemical vapor deposition. This does not mean that any of the pages in the category will be deleted. They may, however, be recategorized. Please share your thoughts on the matter at this category's entry on the Categories for discussion page. Please do not empty the category or remove ...
Figure 1. Conventional Chemical Vapour Infiltration. [3]• Matrix material carried by the gas ↑ Carrier gas Not drawn to scale CVI growth. Figure 2. [3]During chemical vapour infiltration, the fibrous preform is supported on a porous metallic plate through which a mixture of carrier gas along with matrix material is passed at an elevated temperature.
When the vapor source is a liquid or solid, the process is called physical vapor deposition (PVD), [3] which is used in semiconductor devices, thin-film solar panels, and glass coatings. [4] When the source is a chemical vapor precursor, the process is called chemical vapor deposition (CVD).
Plasma-enhanced chemical vapor deposition (PECVD) is a chemical vapor deposition process used to deposit thin films from a gas state to a solid state on a substrate. Chemical reactions are involved in the process, which occur after creation of a plasma of the reacting gases.
In the metal organic chemical vapor deposition (MOCVD) technique, reactant gases are combined at elevated temperatures in the reactor to cause a chemical interaction, resulting in the deposition of materials on the substrate. A reactor is a chamber made of a material that does not react with the chemicals being used.