enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Batch normalization - Wikipedia

    en.wikipedia.org/wiki/Batch_normalization

    In a neural network, batch normalization is achieved through a normalization step that fixes the means and variances of each layer's inputs. Ideally, the normalization would be conducted over the entire training set, but to use this step jointly with stochastic optimization methods, it is impractical to use the global information.

  3. Normalization (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Normalization_(machine...

    Instance normalization (InstanceNorm), or contrast normalization, is a technique first developed for neural style transfer, and is also only used for CNNs. [26] It can be understood as the LayerNorm for CNN applied once per channel, or equivalently, as group normalization where each group consists of a single channel:

  4. Rectifier (neural networks) - Wikipedia

    en.wikipedia.org/wiki/Rectifier_(neural_networks)

    Batch normalization can help address this. [citation needed] ReLU is unbounded. Dying ReLU: ReLU neurons can sometimes be pushed into states in which they become inactive for essentially all inputs. In this state, no gradients flow backward through the neuron, and so the neuron becomes stuck in a perpetually inactive state (it "dies").

  5. Residual neural network - Wikipedia

    en.wikipedia.org/wiki/Residual_neural_network

    A residual block in a deep residual network. Here, the residual connection skips two layers. A residual neural network (also referred to as a residual network or ResNet) [1] is a deep learning architecture in which the layers learn residual functions with reference to the layer inputs.

  6. Federated learning - Wikipedia

    en.wikipedia.org/wiki/Federated_learning

    Diagram of a Federated Learning protocol with smartphones training a global AI model. Federated learning (also known as collaborative learning) is a machine learning technique focusing on settings in which multiple entities (often referred to as clients) collaboratively train a model while ensuring that their data remains decentralized. [1]

  7. Vanishing gradient problem - Wikipedia

    en.wikipedia.org/wiki/Vanishing_gradient_problem

    For a concrete example, consider a typical recurrent network defined by = (,,) = + + where = (,) is the network parameter, is the sigmoid activation function [note 2], applied to each vector coordinate separately, and is the bias vector.

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Data cleansing - Wikipedia

    en.wikipedia.org/wiki/Data_cleansing

    Data cleansing may also involve harmonization (or normalization) of data, which is the process of bringing together data of "varying file formats, naming conventions, and columns", [2] and transforming it into one cohesive data set; a simple example is the expansion of abbreviations ("st, rd, etc." to "street, road, etcetera").