enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Nonparametric statistics - Wikipedia

    en.wikipedia.org/wiki/Nonparametric_statistics

    As non-parametric methods make fewer assumptions, their applicability is much more general than the corresponding parametric methods. In particular, they may be applied in situations where less is known about the application in question. Also, due to the reliance on fewer assumptions, non-parametric methods are more robust.

  3. Parametric statistics - Wikipedia

    en.wikipedia.org/wiki/Parametric_statistics

    Parametric statistical methods are used to compute the 2.33 value above, given 99 independent observations from the same normal distribution. A non-parametric estimate of the same thing is the maximum of the first 99 scores. We don't need to assume anything about the distribution of test scores to reason that before we gave the test it was ...

  4. Nonparametric regression - Wikipedia

    en.wikipedia.org/wiki/Nonparametric_regression

    Nonparametric regression is a category of regression analysis in which the predictor does not take a predetermined form but is constructed according to information derived from the data. That is, no parametric equation is assumed for the relationship between predictors and dependent variable.

  5. List of statistical tests - Wikipedia

    en.wikipedia.org/wiki/List_of_statistical_tests

    Parametric tests assume that the data follow a particular distribution, typically a normal distribution, while non-parametric tests make no assumptions about the distribution. [7] Non-parametric tests have the advantage of being more resistant to misbehaviour of the data, such as outliers . [ 7 ]

  6. Semiparametric model - Wikipedia

    en.wikipedia.org/wiki/Semiparametric_model

    It may appear at first that semiparametric models include nonparametric models, since they have an infinite-dimensional as well as a finite-dimensional component. However, a semiparametric model is considered to be "smaller" than a completely nonparametric model because we are often interested only in the finite-dimensional component of θ ...

  7. Kernel regression - Wikipedia

    en.wikipedia.org/wiki/Kernel_regression

    In statistics, kernel regression is a non-parametric technique to estimate the conditional expectation of a random variable.The objective is to find a non-linear relation between a pair of random variables X and Y.

  8. Mathematical statistics - Wikipedia

    en.wikipedia.org/wiki/Mathematical_statistics

    As non-parametric methods make fewer assumptions, their applicability is much wider than the corresponding parametric methods. In particular, they may be applied in situations where less is known about the application in question. Also, due to the reliance on fewer assumptions, non-parametric methods are more robust.

  9. Parametric model - Wikipedia

    en.wikipedia.org/wiki/Parametric_model

    Parametric models are contrasted with the semi-parametric, semi-nonparametric, and non-parametric models, all of which consist of an infinite set of "parameters" for description. The distinction between these four classes is as follows: [citation needed] in a "parametric" model all the parameters are in finite-dimensional parameter spaces;