enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Divided differences - Wikipedia

    en.wikipedia.org/wiki/Divided_differences

    In mathematics, divided differences is an algorithm, historically used for computing tables of logarithms and trigonometric functions. [citation needed] Charles Babbage's difference engine, an early mechanical calculator, was designed to use this algorithm in its operation. [1] Divided differences is a recursive division process.

  3. Newton polynomial - Wikipedia

    en.wikipedia.org/wiki/Newton_polynomial

    Newton's form has the simplicity that the new points are always added at one end: Newton's forward formula can add new points to the right, and Newton's backward formula can add new points to the left. The accuracy of polynomial interpolation depends on how close the interpolated point is to the middle of the x values of the set of points used ...

  4. Numerical differentiation - Wikipedia

    en.wikipedia.org/wiki/Numerical_differentiation

    This expression is Newton's difference quotient (also known as a first-order divided difference). The slope of this secant line differs from the slope of the tangent line by an amount that is approximately proportional to h. As h approaches zero, the slope of the secant line approaches the slope of the tangent line.

  5. Neville's algorithm - Wikipedia

    en.wikipedia.org/wiki/Neville's_algorithm

    This process yields p 0,4 (x), the value of the polynomial going through the n + 1 data points (x i, y i) at the point x. This algorithm needs O(n 2) floating point operations to interpolate a single point, and O(n 3) floating point operations to interpolate a polynomial of degree n.

  6. Difference engine - Wikipedia

    en.wikipedia.org/wiki/Difference_engine

    The principle of a difference engine is Newton's method of divided differences. If the initial value of a polynomial (and of its finite differences) is calculated by some means for some value of X, the difference engine can calculate any number of nearby values, using the method generally known as the method of finite differences.

  7. Finite difference - Wikipedia

    en.wikipedia.org/wiki/Finite_difference

    In an analogous way, one can obtain finite difference approximations to higher order derivatives and differential operators. For example, by using the above central difference formula for f ′(x + ⁠ h / 2 ⁠) and f ′(x − ⁠ h / 2 ⁠) and applying a central difference formula for the derivative of f ′ at x, we obtain the central difference approximation of the second derivative of f:

  8. Smartwatch and fitness tracker bands have elevated levels of ...

    www.aol.com/lifestyle/smartwatch-fitness-tracker...

    The median PFHxA concentration was nearly 800 parts per billion (ppb), but one sample had a concentration of more than 16,000 ppb. (By comparison, ...

  9. Polynomial interpolation - Wikipedia

    en.wikipedia.org/wiki/Polynomial_interpolation

    The original use of interpolation polynomials was to approximate values of important transcendental functions such as natural logarithm and trigonometric functions.Starting with a few accurately computed data points, the corresponding interpolation polynomial will approximate the function at an arbitrary nearby point.