enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Vortex - Wikipedia

    en.wikipedia.org/wiki/Vortex

    In an irrotational vortex flow with constant fluid density and cylindrical symmetry, the dynamic pressure varies as P ∞ − ⁠ K / r 2 ⁠, where P ∞ is the limiting pressure infinitely far from the axis. This formula provides another constraint for the extent of the core, since the pressure cannot be negative.

  3. Vorticity - Wikipedia

    en.wikipedia.org/wiki/Vorticity

    A vortex tube is the surface in the continuum formed by all vortex lines passing through a given (reducible) closed curve in the continuum. The 'strength' of a vortex tube (also called vortex flux ) [ 10 ] is the integral of the vorticity across a cross-section of the tube, and is the same everywhere along the tube (because vorticity has zero ...

  4. Potential flow - Wikipedia

    en.wikipedia.org/wiki/Potential_flow

    In fluid dynamics, potential flow or irrotational flow refers to a description of a fluid flow with no vorticity in it. Such a description typically arises in the limit of vanishing viscosity , i.e., for an inviscid fluid and with no vorticity present in the flow.

  5. Rankine vortex - Wikipedia

    en.wikipedia.org/wiki/Rankine_vortex

    The Rankine vortex is a simple mathematical model of a vortex in a viscous fluid. It is named after its discoverer, William John Macquorn Rankine. The vortices observed in nature are usually modelled with an irrotational (potential or free) vortex. However, in a potential vortex, the velocity becomes infinite at the vortex center.

  6. Two-dimensional flow - Wikipedia

    en.wikipedia.org/wiki/Two-dimensional_flow

    A vortex is a region where the fluid flows around an imaginary axis. For an irrotational vortex, the flow at every point is such that a small particle placed there undergoes pure translation and does not rotate. Velocity varies inversely with radius in this case.

  7. Helmholtz's theorems - Wikipedia

    en.wikipedia.org/wiki/Helmholtz's_theorems

    The strength of a vortex line is constant along its length. Helmholtz's second theorem A vortex line cannot end in a fluid; it must extend to the boundaries of the fluid or form a closed path. Helmholtz's third theorem A fluid element that is initially irrotational remains irrotational. Helmholtz's theorems apply to inviscid flows.

  8. The Polar Vortex Explained

    www.aol.com/news/polar-vortex-explained...

    The polar vortex is a whirling cone of low pressure over the poles that's strongest in the winter months due to the increased temperature contrast between the polar regions and the mid-latitudes ...

  9. Conservative vector field - Wikipedia

    en.wikipedia.org/wiki/Conservative_vector_field

    The vorticity of an irrotational field is zero everywhere. [6] Kelvin's circulation theorem states that a fluid that is irrotational in an inviscid flow will remain irrotational. This result can be derived from the vorticity transport equation, obtained by taking the curl of the Navier–Stokes equations.