Search results
Results from the WOW.Com Content Network
The polygon is the convex hull of its edges. Additional properties of convex polygons include: The intersection of two convex polygons is a convex polygon. A convex polygon may be triangulated in linear time through a fan triangulation, consisting in adding diagonals from one vertex to all other vertices.
All convex polygons are simple. Concave: Non-convex and simple. There is at least one interior angle greater than 180°. Star-shaped: the whole interior is visible from at least one point, without crossing any edge. The polygon must be simple, and may be convex or concave. All convex polygons are star-shaped. Self-intersecting: the boundary of ...
In some cases, a single flip will cause a non-convex simple polygon to become convex. Once this happens, no more flips are possible. The Erdős–Nagy theorem states that it is always possible to find a sequence of flips that produces a convex polygon in this way. More strongly, for every simple polygon, every sequence of flips will eventually ...
A non-convex regular polygon is a regular star polygon. The most common example is the pentagram, which has the same vertices as a pentagon, but connects alternating vertices. For an n-sided star polygon, the Schläfli symbol is modified to indicate the density or "starriness" m of the polygon, as {n/m}.
Carpenter's rule problem, on continuous motion of a simple polygon into a convex polygon; Erdős–Nagy theorem, a process of reflecting pockets of a non-convex simple polygon to make it convex; Net (polyhedron), a simple polygon that can be folded and glued to form a given polyhedron; Spherical polygon, an analogous concept on the surface of a ...
Repeatedly finding and removing a mouth from a non-convex polygon will eventually turn it into the convex hull of the initial polygon. This principle can be applied to the surrounding polygons of a set of points; these are polygons that use some of the points as vertices, and contain the rest of them. Removing a mouth from a surrounding polygon ...
A p-gonal regular polygon is represented by Schläfli symbol {p}. Many sources only consider convex polygons, but star polygons, like the pentagram, when considered, can also be regular. They use the same vertices as the convex forms, but connect in an alternate connectivity which passes around the circle more than once to be completed.
In the case of genus one, a fundamental convex polygon is sought for the action by translation of Λ = Z a ⊕ Z b on R 2 = C where a and b are linearly independent over R. (After performing a real linear transformation on R 2, it can be assumed if necessary that Λ = Z 2 = Z + Z i; for a genus one Riemann surface it can be taken to have the form Λ = Z 2 = Z + Z ω, with Im ω > 0.)