Search results
Results from the WOW.Com Content Network
The bus matrix purpose is one of high abstraction and visionary planning on the data warehouse architectural level. By dictating coherency in the development and implementation of an overall data warehouse the bus architecture approach enables an overall vision of the broader enterprise integration and consistency while at the same time dividing the problem into more manageable parts [2 ...
The common warehouse metamodel (CWM) defines a specification for modeling metadata for relational, non-relational, multi-dimensional, and most other objects found in a data warehousing environment. The specification is released and owned by the Object Management Group , which also claims a trademark in the use of "CWM".
Identify dimensions for facts (product dimension, location dimension, time dimension, organization dimension), by asking questions that make sense within the context of the business, like 'analyze by X', where X is replaced with the subject to test. List the columns that describe each dimension (region name, branch name, business unit name).
Dimensions can define a wide variety of characteristics, but some of the most common attributes defined by dimension tables include: Time dimension tables describe time at the lowest level of time granularity for which events are recorded in the star schema; Geography dimension tables describe location data, such as country, state, or city
The dimension is a data set composed of individual, non-overlapping data elements. The primary functions of dimensions are threefold: to provide filtering, grouping and labelling. These functions are often described as "slice and dice". A common data warehouse example involves sales as the measure, with customer and product as dimensions.
Typically dimensions are nouns like date, store, inventory etc. These dimensions are where all the data is stored. For example, the date dimension could contain data such as year, month and weekday. Identify the facts. After defining the dimensions, the next step in the process is to make keys for the fact table.
The snowflake schema is similar to the star schema. However, in the snowflake schema, dimensions are normalized into multiple related tables, whereas the star schema's dimensions are denormalized with each dimension represented by a single table. A complex snowflake shape emerges when the dimensions of a snowflake schema are elaborate, having ...
Data Warehouse and Data mart overview, with Data Marts shown in the top right. In computing, a data warehouse (DW or DWH), also known as an enterprise data warehouse (EDW), is a system used for reporting and data analysis and is a core component of business intelligence. [1] Data warehouses are central repositories of data integrated from ...